GHBMP | R Documentation |
This function simulates a realisation of a Gaussian Haar-based multifractional process at any
time point or time sequence on the interval [0,1]
.
GHBMP(t, H, J = 15, num.cores = availableCores(omit = 1))
t |
Time point or time sequence on the interval |
H |
Hurst function which depends on |
J |
Positive integer. |
num.cores |
Number of cores to set up the clusters for parallel computing. |
The following formula defined in Ayache, A., Olenko, A. & Samarakoon, N. (2025) was used in simulating Gaussian Haar-based multifractional process.
X(t) := \sum_{j=0}^{+\infty} \sum_{k=0}^{2^{j}-1}\left(\int_{0}^{1} (t-s)_{+}^{H_{j}(k/{2^j})-{1}/{2}} h_{j,k}(s)ds \right)\varepsilon_{j,k},
where
\int_{0}^{1} (t-s)_{+}^{H_{j,k}-\frac{1}{2}} h_{j,k} (s) ds = 2^{-j H_{j,k}} h^{[H_{j,k}]} (2^jt-k)
with h^{[\lambda]} (x) = \int_{\mathbb{R}} (x-s)_{+}^{\lambda-\frac{1}{2}} h(s) ds
.
h
is the Haar mother wavelet, j
and k
are positive integers, t
is time, H
is the Hurst function and
\varepsilon_{j,k}
is a sequence of independent \mathcal{N}(0,1)
Gaussian random variables.
For simulations, the truncated version of this formula with first summation up to J is used.
A data frame of class "mp"
where the first column is time moments t
and second column is simulated values of X(t)
.
See Examples for the usage of constant, time-varying, piecewise or step Hurst functions.
Ayache, A., Olenko, A. and Samarakoon, N. (2025). On Construction, Properties and Simulation of Haar-Based Multifractional Processes. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.48550/arXiv.2503.07286")}. (submitted).
Hurst
, plot.mp
, Bm
, FBm
,
FGn
, Bbridge
, FBbridge
#Constant Hurst function
t <- seq(0, 1, by = (1/2)^10)
H <- function(t) {return(0.4 + 0*t)}
GHBMP(t, H)
#Linear Hurst function
t <- seq(0, 1, by = (1/2)^10)
H <- function(t) {return(0.2 + 0.45*t)}
GHBMP(t, H)
#Oscillating Hurst function
t <- seq(0, 1, by = (1/2)^10)
H <- function(t) {return(0.5 - 0.4 * sin(6 * 3.14 * t))}
GHBMP(t, H)
#Piecewise Hurst function
t <- seq(0, 1, by = (1/2)^10)
H <- function(x) {
ifelse(x >= 0 & x <= 0.8, 0.375 * x + 0.2,
ifelse(x > 0.8 & x <= 1,-1.5 * x + 1.7, NA))
}
GHBMP(t, H)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.