View source: R/Covariance_fn.R
cov_GHBMP | R Documentation |
Computes the theoretical covariance matrix of a Gaussian Haar-based multifractional process.
cov_GHBMP(
t,
H,
J = 8,
theta = NULL,
plot = FALSE,
num.cores = availableCores(omit = 1)
)
t |
Time point or time sequence on the interval |
H |
Hurst function |
J |
Positive integer. For large J values could be rather time consuming. Default is set to 8. |
theta |
Optional: Smoothing parameter. |
plot |
Logical: If TRUE, a 3D surface plot of the covariance function is plotted in interactive sessions. |
num.cores |
Number of cores to set up the clusters for parallel computing. |
To make it comparable with the empirical covariance function the same smoothing parameter
theta
can be used if needed.
An m \times m
matrix, where m
is the length of t
.
Ayache, A., Olenko, A. and Samarakoon, N. (2025). On Construction, Properties and Simulation of Haar-Based Multifractional Processes. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.48550/arXiv.2503.07286")}. (submitted).
GHBMP
, est_cov
t <- seq(0, 1, by = 0.01)
H <- function(t) {return(0.5 - 0.4 * sin(6 * 3.14 * t))}
#Smoothed covariance function
cov_GHBMP(t, H, theta = 0.1, plot = TRUE)
#Non-smoothed covariance function
cov_GHBMP(t, H, plot = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.