R/Covariance_fn.R

Defines functions cov_GHBMP est_cov

Documented in cov_GHBMP est_cov

#' Empirical covariance function
#'
#' @description
#' Computes the empirical covariance function of a process, for each pair of time points in the
#' time sequence using M realisations of the process.
#' @param theta Smoothing parameter.
#' @param X A data frame where the first column is the numeric time sequence and the remaining
#' columns are the values of each realisation of the process.
#' @param plot Logical: If TRUE, a 3D surface plot of the covariance function is plotted in interactive sessions.
#'
#' @return
#' An \eqn{m \times m} matrix, where \eqn{m} is the number of time points.
#' Each element represents the estimated value of covariance function for the
#' corresponding time points. Time points are arranged in ascending order.
#'
#' @details
#' The smoothing parameter \code{theta} can help to better visualise changes between
#' neighbour estimated values.
#'
#' @importFrom fields image.smooth
#' @importFrom plotly plot_ly layout
#' @export est_cov
#' @seealso \code{\link{cov_GHBMP}}
#' @examples
#' \donttest{
#' #Matrix of empirical covariance estimates of the GHBMP with Hurst function H.
#' t <- seq(0, 1, by = (1/2)^8)
#' H <- function(t) {return(0.5 - 0.4 * sin(6 * 3.14 * t))}
#' #Only 5 realisations of GHBMP are used in this example to reduce the computational time.
#' X.t <- replicate(5, GHBMP(t, H), simplify = FALSE)
#' X <- do.call(rbind, lapply(X.t, function(df) df[, 2]))
#' Data <- data.frame(t, t(X))
#' cov.mat <- est_cov(Data, theta = 0.2, plot = TRUE)
#' cov.mat
#' }
est_cov<-function(X, theta = 0.1, plot = FALSE)
{

  if (!is.data.frame(X) | !(all(sapply(X, is.numeric)))) {
    stop("X must be a numeric data frame")
  }

  if (!is.numeric(theta)) {
    stop("theta must be numeric")
  } else if (!(theta > 0)){
    stop("theta must be positive")
  }

  if (!is.logical(plot)) {
    stop("Plot must have logical inputs either TRUE or FALSE")
  }

  X <- na.omit(X)
  X <- X[order(X[[1]]),]

  X.data <- t(X[,-1])
  t <- X[,1]

  m <- ncol(X.data)

  X_mean <- colMeans(X.data)

  C <- matrix(0, m, m)

  for (i in 1:m) {
    for (j in 1:i) {  # Compute only for j ≤ i (lower)
      C[i, j] <- mean(X.data[,i] * X.data[,j]) - X_mean[i] * X_mean[j]
    }
  }

  C[upper.tri(C)] <- t(C)[upper.tri(C)]

  if(!is.null(theta))
  {
    D <- mean(diff(t))
    Smooth_data <- image.smooth(C, theta = theta, dx = D,dy = D)
    C <- Smooth_data$z
  }

  if (isTRUE(plot) && interactive())
  {
    cov.fig <- plot_ly(x = ~t, y = ~t, z = ~C, type = 'surface', colorbar = list(title = "Covariance"))

    cov.fig <- layout(cov.fig, scene = list (xaxis = list(title = "t"), yaxis = list(title = "s"), zaxis = list(title = "Covariance")))

    print(cov.fig)
  }

  return(C)

}


#' Covariance of Gaussian Haar-based multifractional processes
#'
#' @description
#' Computes the theoretical covariance matrix of a Gaussian Haar-based multifractional process.
#'
#' @param t Time point or time sequence on the interval \eqn{[0,1]}.
#' @param H Hurst function \eqn{H(t)} which depends on \code{t}.
#' @param J Positive integer. For large J values could be rather time consuming. Default is set to 8.
#' @param theta Optional: Smoothing parameter.
#' @param plot Logical: If TRUE, a 3D surface plot of the covariance function is plotted in interactive sessions.
#' @param num.cores Number of cores to set up the clusters for parallel computing.
#'
#' @return An \eqn{m \times m} matrix, where \eqn{m} is the length of \code{t}.
#'
#' @details
#' To make it comparable with the empirical covariance function the same smoothing parameter
#' \code{theta} can be used if needed.
#'
#' @importFrom parallel makeCluster stopCluster
#' @importFrom parallelly availableCores
#' @importFrom doParallel registerDoParallel
#' @importFrom foreach foreach %dopar%
#' @importFrom plotly plot_ly layout
#' @importFrom fields image.smooth
#' @references Ayache, A., Olenko, A. and Samarakoon, N. (2025).
#' On Construction, Properties and Simulation of Haar-Based Multifractional Processes. \doi{doi:10.48550/arXiv.2503.07286}. (submitted).
#'
#' @export cov_GHBMP
#'
#' @seealso \code{\link{GHBMP}}, \code{\link{est_cov}}
#'
#' @examples
#' \donttest{
#' t <- seq(0, 1, by = 0.01)
#' H <- function(t) {return(0.5 - 0.4 * sin(6 * 3.14 * t))}
#'
#' #Smoothed covariance function
#' cov_GHBMP(t, H, theta = 0.1, plot = TRUE)
#'
#' #Non-smoothed covariance function
#' cov_GHBMP(t, H, plot = TRUE)
#' }
cov_GHBMP<-function(t, H, J = 8, theta = NULL, plot = FALSE, num.cores = availableCores(omit = 1))
{

  if (!is.numeric(t)|!all(t >= 0 & t<= 1)) {
    stop("t must be a numeric sequence between 0 and 1")
  }

  H.t<-sapply(t, H)
  if (!is.numeric(H.t) | !all(H.t > 0 & H.t< 1)) {
    stop("H must be a function which returns a numeric list between 0 and 1")
  }

  if (!is.numeric(J)) {
    stop("J must be numeric")
  } else if (!(J > 0) | !(J %% 1 == 0)){
    stop("J must be a positive integer")
  }

  if (!is.logical(plot)) {
    stop("Plot must have logical inputs either TRUE or FALSE")
  }

  if (!is.numeric(num.cores)) {
    stop("num.cores must be numeric")
  } else if (!(num.cores %% 1 == 0) | !(num.cores > 0)) {
    stop("num.cores must be a positive integer")
  }

  h<-function(x, lambda)
  {
    ((lambda + 0.5)^(-1)) * ((x * (x>0))^(lambda + 0.5)-(2 * (((x-0.5) * ((x - 0.5) > 0))^(lambda + 0.5))) + (((x - 1) * ((x - 1) > 0)) ^ (lambda + 0.5)))
  }

  int<-function(j, k, t, H1){
    H11 <- H1(t)
    return((2^(-j * H11)) * h(((2^j) * t) - k, H11))
  }

  x1 <- 0:J
  x2 <- 0:(2^(J) - 1)

  X<-function(t,s){
    A <- outer(x1, x2, function(j, k){int(j, k, t, H)*int(j, k, s, H)})
    return(sum(A))
  }

  cl <- makeCluster(num.cores)
  registerDoParallel(cl)

  i <- NULL
  cov.mat <- foreach(i = 1:length(t), .combine = rbind) %dopar% {sapply(t, function(j) X(t[i], j))}

  stopCluster(cl)

  rownames(cov.mat) <- NULL

  if(!is.null(theta))
  {
    if (!is.numeric(theta)) {
      stop("theta must be numeric")
    } else if (!(theta > 0)){
      stop("theta must be positive")
    }

    D <- mean(diff(t))
    Smooth_data <- image.smooth(cov.mat, theta = theta, dx = D,dy = D)
    cov.mat <- Smooth_data$z
  }

  if (isTRUE(plot) && interactive())
  {

    cov.fig <- plot_ly(x = ~t, y = ~t, z = ~cov.mat, type = 'surface', colorbar = list(title = "Covariance"))

    cov.fig <- layout(cov.fig, scene = list (xaxis = list(title = "t"), yaxis = list(title = "s"), zaxis = list(title = "Covariance")))
    print(cov.fig)
  }

  return(cov.mat)

}

Try the Rmfrac package in your browser

Any scripts or data that you put into this service are public.

Rmfrac documentation built on Sept. 10, 2025, 10:31 a.m.