View source: R/MixmodPredict.R
oldmixmodPredict | R Documentation |
MixmodPredict
] classThis function computes the second step of a discriminant analysis. The aim of this step is to assign remaining observations to one of the groups.
oldmixmodPredict(data, classificationRule, ...)
data |
matrix or data frame containing quantitative,qualitative or composite data. Rows correspond to observations and columns correspond to variables. |
classificationRule |
a [ |
... |
... |
Returns an instance of the [MixmodPredict
] class which contains predicted partition and
probabilities.
Florent Langrognet and Remi Lebret and Christian Poli ans Serge Iovleff, with contributions from C. Biernacki and G. Celeux and G. Govaert contact@mixmod.org
# start by extract 10 observations from iris data set
remaining.obs <- sample(1:nrow(iris), 10)
# then run a mixmodLearn() analysis without those 10 observations
learn <- mixmodLearn(iris[-remaining.obs, 1:4], iris$Species[-remaining.obs])
# create a MixmodPredict to predict those 10 observations
prediction <- mixmodPredict(
data = iris[remaining.obs, 1:4],
classificationRule = learn["bestResult"]
)
# show results
prediction
# compare prediction with real results
paste("accuracy= ", mean(as.integer(iris$Species[remaining.obs]) == prediction["partition"]) * 100,
"%",
sep = ""
)
## A composite example with a heterogeneous data set
data(heterodatatrain)
## Learning with training data
learn <- mixmodLearn(heterodatatrain[-1], knownLabels = heterodatatrain$V1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.