| optimizeR | R Documentation |
optimizeR searches the interval from
lower to upper for a minimum
of the function f with respect to its first argument.
optimizeR(f, lower, upper, ..., tol = 1e-20,
method = c("Brent", "GoldenRatio"),
maximum = FALSE,
precFactor = 2.0, precBits = -log2(tol) * precFactor,
maxiter = 1000, trace = FALSE)
f |
the function to be optimized. |
... |
additional named or unnamed arguments to be passed
to |
lower |
the lower end point of the interval to be searched. |
upper |
the upper end point of the interval to be searched. |
tol |
the desired accuracy, typically higher than double
precision, i.e., |
method |
|
maximum |
logical indicating if |
precFactor |
only for default |
precBits |
number of bits to be used for
|
maxiter |
maximal number of iterations to be used. |
trace |
integer or logical indicating if and how iterations
should be monitored; if an integer |
"Brent":Brent(1973)'s simple and robust algorithm
is a hybrid, using a combination of the golden ratio and local
quadratic (“parabolic”) interpolation. This is the same
algorithm as standard R's optimize(), adapted to
high precision numbers.
In smooth cases, the convergence is considerably faster than the golden section or Fibonacci ratio algorithms.
"GoldenRatio":The golden ratio method, aka ‘golden-section search’ works as follows: from a given interval containing the solution, it constructs the next point in the golden ratio between the interval boundaries.
A list with components minimum (or maximum)
and objective which give the location of the minimum (or maximum)
and the value of the function at that point;
iter specifiying the number of iterations, the logical
convergence indicating if the iterations converged and
estim.prec which is an estimate or an upper bound of the final
precision (in x).
method the string of the method used.
"GoldenRatio" is based on Hans Werner Borchers'
golden_ratio (package pracma);
modifications and "Brent" by Martin Maechler.
R's standard optimize;
for multivariate optimization, Rmpfr's hjkMpfr();
for root finding, Rmpfr's unirootR.
## The minimum of the Gamma (and lgamma) function (for x > 0):
Gmin <- optimizeR(gamma, .1, 3, tol = 1e-50)
str(Gmin, digits = 8)
## high precision chosen for "objective"; minimum has "estim.prec" = 1.79e-50
Gmin[c("minimum","objective")]
## it is however more accurate to 59 digits:
asNumeric(optimizeR(gamma, 1, 2, tol = 1e-100)$minimum - Gmin$minimum)
iG5 <- function(x) -exp(-(x-5)^2/2)
curve(iG5, 0, 10, 200)
o.dp <- optimize (iG5, c(0, 10)) #-> 5 of course
oM.gs <- optimizeR(iG5, 0, 10, method="Golden")
oM.Br <- optimizeR(iG5, 0, 10, method="Brent", trace=TRUE)
oM.gs$min ; oM.gs$iter
oM.Br$min ; oM.Br$iter
(doExtras <- Rmpfr:::doExtras())
if(doExtras) {## more accuracy {takes a few seconds}
oM.gs <- optimizeR(iG5, 0, 10, method="Golden", tol = 1e-70)
oM.Br <- optimizeR(iG5, 0, 10, tol = 1e-70)
}
rbind(Golden = c(err = as.numeric(oM.gs$min -5), iter = oM.gs$iter),
Brent = c(err = as.numeric(oM.Br$min -5), iter = oM.Br$iter))
## ==> Brent is orders of magnitude more efficient !
## Testing on the sine curve with 40 correct digits:
sol <- optimizeR(sin, 2, 6, tol = 1e-40)
str(sol)
sol <- optimizeR(sin, 2, 6, tol = 1e-50,
precFactor = 3.0, trace = TRUE)
pi.. <- 2*sol$min/3
print(pi.., digits=51)
stopifnot(all.equal(pi.., Const("pi", 256), tolerance = 10*1e-50))
if(doExtras) { # considerably more expensive
## a harder one:
f.sq <- function(x) sin(x-2)^4 + sqrt(pmax(0,(x-1)*(x-4)))*(x-2)^2
curve(f.sq, 0, 4.5, n=1000)
msq <- optimizeR(f.sq, 0, 5, tol = 1e-50, trace=5)
str(msq) # ok
stopifnot(abs(msq$minimum - 2) < 1e-49)
## find the other local minimum: -- non-smooth ==> Golden ratio -section is used
msq2 <- optimizeR(f.sq, 3.5, 5, tol = 1e-50, trace=10)
stopifnot(abs(msq2$minimum - 4) < 1e-49)
## and a local maximum:
msq3 <- optimizeR(f.sq, 3, 4, maximum=TRUE, trace=2)
stopifnot(abs(msq3$maximum - 3.57) < 1e-2)
}#end {doExtras}
##----- "impossible" one to get precisely ------------------------
ff <- function(x) exp(-1/(x-8)^2)
curve(exp(-1/(x-8)^2), -3, 13, n=1001)
(opt. <- optimizeR(function(x) exp(-1/(x-8)^2), -3, 13, trace = 5))
## -> close to 8 {but not very close!}
ff(opt.$minimum) # gives 0
if(doExtras) {
## try harder ... in vain ..
str(opt1 <- optimizeR(ff, -3,13, tol = 1e-60, precFactor = 4))
print(opt1$minimum, digits=20)
## still just 7.99998038 or 8.000036655 {depending on method}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.