Nothing
#' @name prior
#' @inherit BayesTools::prior
#' @export
prior <- BayesTools::prior
#' @name prior_none
#' @inherit BayesTools::prior_none
#' @export
prior_none <- BayesTools::prior_none
#' @name prior_factor
#' @inherit BayesTools::prior_factor
#' @export
prior_factor <- function(distribution, parameters, truncation = list(lower = -Inf, upper = Inf), prior_weights = 1, contrast = "orthonormal"){
BayesTools::prior_factor(distribution = distribution, parameters = parameters, truncation = truncation, prior_weights = prior_weights, contrast = contrast)
}
#' @name prior_informed
#' @inherit BayesTools::prior_informed
#' @details Further details can be found in \insertCite{erp2017estimates;textual}{BayesTools},
#' \insertCite{gronau2017bayesian;textual}{BayesTools}, and
#' \insertCite{bartos2021bayesian;textual}{BayesTools}.
#' @references
#' \insertAllCited{}
#' @export
prior_informed <- BayesTools::prior_informed
#' @name prior_informed_medicine_names
#' @title Names of medical subfields from the Cochrane database of systematic reviews
#' @description Contain names identifying the individual subfields
#' from the Cochrane database of systematic reviews. The individual
#' elements correspond to valid name arguments for the [prior_informed()]
#' function.
#' @export
prior_informed_medicine_names <- BayesTools::prior_informed_medicine_names
#' @title Orthornomal contrast matrix
#'
#' @description Return a matrix of orthornomal contrasts.
#' Code is based on \code{stanova::contr.bayes} and corresponding to description
#' by \insertCite{rouder2012default;textual}{BayesTools}
#'
#' @param n a vector of levels for a factor, or the number of levels
#' @param contrasts logical indicating whether contrasts should be computed
#'
#' @examples
#' contr.orthonormal(c(1, 2))
#' contr.orthonormal(c(1, 2, 3))
#'
#' @references
#' \insertAllCited{}
#'
#' @return A matrix with n rows and k columns, with k = n - 1 if \code{contrasts = TRUE} and k = n
#' if \code{contrasts = FALSE}.
#'
#' @export
contr.orthonormal <- BayesTools::contr.orthonormal
#' @title Mean difference contrast matrix
#'
#' @description Return a matrix of mean difference contrasts.
#' This is an adjustment to the \code{contr.orthonormal} that ascertains that the prior
#' distributions on difference between the gran mean and factor level are identical independent
#' of the number of factor levels (which does not hold for the orthonormal contrast). Furthermore,
#' the contrast is re-scaled so the specified prior distribution exactly corresponds to the prior
#' distribution on difference between each factor level and the grand mean -- this is approximately
#' twice the scale of \code{contr.orthonormal}.
#'
#' @param n a vector of levels for a factor, or the number of levels
#' @param contrasts logical indicating whether contrasts should be computed
#'
#' @examples
#' contr.meandif(c(1, 2))
#' contr.meandif(c(1, 2, 3))
#'
#' @references
#' \insertAllCited{}
#'
#' @return A matrix with n rows and k columns, with k = n - 1 if \code{contrasts = TRUE} and k = n
#' if \code{contrasts = FALSE}.
#'
#' @export
contr.meandif <- BayesTools::contr.meandif
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.