neg_log_marginal_post_approx_ref_deriv_ppgasp | R Documentation |
The function computes the derivative (with regard to log of inverse range parameter) of natural logarithm of marginal posterior density of the PP GaSP model with the jointly robust prior after marginalizing out the mean (trend) and variance parameters by the location-scale prior.
neg_log_marginal_post_approx_ref_deriv_ppgasp(param, nugget, nugget.est,
R0, X, zero_mean,output, CL, a, b,
kernel_type, alpha)
param |
A vector of natural logarithm of inverse-range parameters and natural logarithm of the nugget-variance ratio parameter. |
nugget |
The nugget-variance ratio parameter if this parameter is fixed. |
nugget.est |
Boolean value of whether the nugget is estimated or fixed. |
R0 |
A List of matrix where the j-th matrix is an absolute difference matrix of the j-th input vector. |
X |
The mean basis function i.e. the trend function. |
zero_mean |
The mean basis function is zero or not. |
output |
The output matrix. |
CL |
Pseudoparameter in the approximate reference prior. |
a |
Pseudoparameter in the approximate reference prior. |
b |
Pseudoparameter in the approximate reference prior. |
kernel_type |
A vector of |
alpha |
Roughness parameters in the kernel functions. |
The derivative of natural logarithm of marginal posterior density with the jointly robust prior.
Mengyang Gu [aut, cre], Jesus Palomo [aut], James Berger [aut]
Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
M. Gu. and J.O. Berger (2016). Parallel partial Gaussian process emulation for computer models with massive output. Annals of Applied Statistics, 10(3), 1317-1347.
M. Gu. (2016). Robust uncertainty quantification and scalable computation for computer models with massive output. Ph.D. thesis. Duke University.
M. Gu (2018), Jointly robust prior for Gaussian stochastic process in emulation, calibration and variable selection, arXiv:1804.09329.
neg_log_marginal_post_approx_ref_ppgasp
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.