R/cwt_dog.R

Defines functions vDOG DOG

Documented in DOG vDOG

#########################################################################
#       $Log: Cwt_DOG.S,v $
#########################################################################
#
#               (c) Copyright  1997
#                          by                                   
#      Author: Rene Carmona, Bruno Torresani, Wen-Liang Hwang   
#                  Princeton University
#                  All right reserved                           
#########################################################################

DOG <- function(input, noctave, nvoice = 1, moments, twoD = TRUE, plot = TRUE)
#########################################################################
#       DOG: Derivative of Gaussian  
#       ----
# 	 continuous wavelet transform function:
#         compute the continuous wavelet transform with (complex-valued)
#	  derivative of gaussians wavelet
#
#       input:
#       ------
# 	 input: input signal (possibly complex-valued)
#	 noctave: number of powers of 2 for the scale variable
#	 nvoice: number of scales between 2 consecutive powers of 2
#        moments: number of vanishing moments for the wavelet
#	 twoD: if set to TRUE, organizes the output as a 2D array 
#			(signal_size X nb_scales)
#		      if not: 3D array (signal_size X noctave X nvoice)
#	 plot: if set to TRUE, displays the modulus of cwt on the graphic
#		device.
#
#       output:
#       -------
#        tmp: continuous (complex) wavelet transform
#
#########################################################################
{
  oldinput <- input
  isize <- length(oldinput)
  
  tmp <- adjust.length(oldinput)
  input <- tmp$signal
  newsize <- length(input)
  
  pp <- noctave * nvoice
  Routput <- matrix(0,newsize,pp)
  Ioutput <- matrix(0,newsize,pp)
  output <- matrix(0,newsize,pp)
  dim(Routput) <- c(pp * newsize,1)
  dim(Ioutput) <- c(pp * newsize,1)
  dim(input) <- c(newsize,1)
  
  z <- .C("Scwt_DOG",
          as.double(Re(input)),
          as.double(Im(input)),
          Rtmp = as.double(Routput),
          Itmp = as.double(Ioutput),
          as.integer(noctave),
          as.integer(nvoice),
          as.integer(newsize),
          as.integer(moments),
           PACKAGE="Rwave")
  
  Routput <- z$Rtmp
  Ioutput <- z$Itmp
  dim(Routput) <- c(newsize,pp)
  dim(Ioutput) <- c(newsize,pp)
  if(twoD) {
    output <- Routput[1:isize,] + 1i*Ioutput[1:isize,]
    if(plot) image(Mod(output))
    output
  } 
  else {
    Rtmp <- array(0,c(isize,noctave,nvoice))
    Itmp <- array(0,c(isize,noctave,nvoice))
    for(i in 1:noctave)
      for(j in 1:nvoice) {
        Rtmp[,i,j] <- Routput[1:isize,(i-1)*nvoice+j]
        Itmp[,i,j] <- Ioutput[1:isize,(i-1)*nvoice+j]
      }
    Rtmp + 1i * Itmp
  }
}

vDOG <- function(input, scale, moments)
#########################################################################
#       vDOG:   
#       -----
#        continuous wavelet transform on one scale:
# 	 compute the continuous wavelet transform with (complex-valued)
#	  derivative of gaussians wavelet
#
#       input:
#       ------
# 	 input: input signal (possibly complex-valued)
#        scale: value of the scale at which the transform is computed
#        moments: number of vanishing moments
#
#       output:
#       -------
#        Routput + i Ioutput: voice wavelet transform (complex 1D array)
#
#########################################################################
{
  oldinput <- input
  isize <- length(oldinput)
  
  tmp <- adjust.length(oldinput)
  input <- tmp$signal
  newsize <- length(input)
  
  Routput <- numeric(newsize)
  Ioutput <- numeric(newsize)
  dim(input) <- c(newsize,1)
  
  z <- .C("Svwt_DOG",
          as.double(Re(input)),
          as.double(Im(input)),
          Rtmp = as.double(Routput),
          Itmp = as.double(Ioutput),
          as.double(scale),
          as.integer(newsize),
          as.integer(moments),
           PACKAGE="Rwave")
  
  Routput <- z$Rtmp
  Ioutput <- z$Itmp
  Routput[1:isize] + 1i*Ioutput[1:isize]
}

Try the Rwave package in your browser

Any scripts or data that you put into this service are public.

Rwave documentation built on Oct. 22, 2022, 1:05 a.m.