View source: R/do_GroupwiseDEHeatmap.R
| do_GroupwiseDEHeatmap | R Documentation | 
Compute a dotplot with the results of a group-wise DE analysis.
do_GroupwiseDEHeatmap(
  sample,
  de_genes,
  group.by = NULL,
  assay = NULL,
  slot = "data",
  number.breaks = 5,
  dot.scale = 8,
  top_genes = 5,
  p.cutoff = 0.05,
  flip = FALSE,
  plot.title = NULL,
  plot.subtitle = NULL,
  plot.caption = NULL,
  xlab = NULL,
  ylab = NULL,
  use_viridis = FALSE,
  colors.use = NULL,
  colorblind = FALSE,
  viridis.direction = -1,
  viridis.palette = "G",
  sequential.direction = 1,
  sequential.palette = "YlGnBu",
  diverging.palette = "RdBu",
  diverging.direction = -1,
  legend.position = "bottom",
  legend.title = NULL,
  legend.width = 1,
  legend.length = 7.5,
  legend.framewidth = 0.5,
  legend.tickwidth = 0.5,
  legend.framecolor = "grey50",
  legend.tickcolor = "white",
  legend.ncol = NULL,
  legend.nrow = NULL,
  legend.byrow = FALSE,
  legend.type = "colorbar",
  font.size = 14,
  font.type = "sans",
  axis.text.x.angle = 45,
  min.cutoff = NA,
  max.cutoff = NA,
  enforce_symmetry = FALSE,
  na.value = "grey75",
  border.color = "black",
  plot.title.face = "bold",
  plot.subtitle.face = "plain",
  plot.caption.face = "italic",
  axis.title.face = "bold",
  axis.text.face = "plain",
  legend.title.face = "bold",
  legend.text.face = "plain"
)
sample | 
 
  | 
de_genes | 
 
  | 
group.by | 
 
  | 
assay | 
 
  | 
slot | 
 
  | 
number.breaks | 
 
  | 
dot.scale | 
 
  | 
top_genes | 
 
  | 
p.cutoff | 
 
  | 
flip | 
 
  | 
plot.title, plot.subtitle, plot.caption | 
 
  | 
xlab, ylab | 
 
  | 
use_viridis | 
 
  | 
colors.use | 
 
  | 
colorblind | 
 
  | 
viridis.direction | 
 
  | 
viridis.palette | 
 
  | 
sequential.direction | 
 
  | 
sequential.palette | 
 
  | 
diverging.palette | 
 
  | 
diverging.direction | 
 
  | 
legend.position | 
 
 
  | 
legend.title | 
 
  | 
legend.length, legend.width | 
 
  | 
legend.framewidth, legend.tickwidth | 
 
  | 
legend.framecolor | 
 
  | 
legend.tickcolor | 
 
  | 
legend.ncol | 
 
  | 
legend.nrow | 
 
  | 
legend.byrow | 
 
  | 
legend.type | 
 
 
  | 
font.size | 
 
  | 
font.type | 
 
 
  | 
axis.text.x.angle | 
 
  | 
min.cutoff, max.cutoff | 
 
  | 
enforce_symmetry | 
 
  | 
na.value | 
 
  | 
border.color | 
 
  | 
plot.title.face, plot.subtitle.face, plot.caption.face, axis.title.face, axis.text.face, legend.title.face, legend.text.face | 
 
 
  | 
A dotplot composed of 3 main panels: -log10(adjusted p-value), log2(FC) and mean expression by cluster.
  # Check Suggests.
  value <- SCpubr:::check_suggests(function_name = "do_GroupwiseDEHeatmap", passive = TRUE)
  if (isTRUE(value)){
    # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
    # Define your Seurat object.
    sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))
    # Compute DE genes and transform to a tibble.
    de_genes <- readRDS(system.file("extdata/de_genes_example.rds", package = "SCpubr"))
    # Default output.
    p <- SCpubr::do_GroupwiseDEHeatmap(sample = sample,
                                    de_genes = de_genes)
    p
  } else if (base::isFALSE(value)){
    message("This function can not be used without its suggested packages.")
    message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
  }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.