Description Details Source Examples
Rules generated by the SDIGA algorithm with the default parameters for the haberman
dataset.
The rule set contains only two rules. One for each target variable
Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th International Biometrics Conference, Boston, pp. 104-122.
Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing Logistic Regression Models (with discussion), Journal of the American Statistical Association 79: 61-83.
Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of Wisconsin, Madison, WI.
1 |
[[1]]
[[1]]$rule
[1] "IF Positive = Label 0 ( -26 , 0 , 26 ) THEN positive"
[[1]]$qualityMeasures
[[1]]$qualityMeasures$nVars
[1] 2
[[1]]$qualityMeasures$Coverage
[1] 0.905738
[[1]]$qualityMeasures$Unusualness
[1] -0.016645
[[1]]$qualityMeasures$Significance
[1] 0.25544
[[1]]$qualityMeasures$FuzzySupport
[1] 0.194987
[[1]]$qualityMeasures$Support
[1] 0.217213
[[1]]$qualityMeasures$FuzzyConfidence
[1] 0.228482
[[1]]$qualityMeasures$Confidence
[1] 0.239819
[[1]]$qualityMeasures$TPr
[1] 0.828125
[[1]]$qualityMeasures$FPr
[1] 0.933333
[[2]]
[[2]]$rule
[1] "IF Positive = Label 0 ( -26 , 0 , 26 ) THEN negative"
[[2]]$qualityMeasures
[[2]]$qualityMeasures$nVars
[1] 2
[[2]]$qualityMeasures$Coverage
[1] 0.905738
[[2]]$qualityMeasures$Unusualness
[1] 0.024069
[[2]]$qualityMeasures$Significance
[1] 0.25544
[[2]]$qualityMeasures$FuzzySupport
[1] 0.658417
[[2]]$qualityMeasures$Support
[1] 0.688525
[[2]]$qualityMeasures$FuzzyConfidence
[1] 0.771518
[[2]]$qualityMeasures$Confidence
[1] 0.760181
[[2]]$qualityMeasures$TPr
[1] 0.933333
[[2]]$qualityMeasures$FPr
[1] 0.828125
attr(,"class")
[1] "SDEFSR_Rules"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.