Nothing
test_that("ITT", {
data <- copy(SEQdata)
model <- SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome", list("N", "L", "P"), list("sex"),
method = "ITT", options = SEQopts()
)
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -6.8593155484953, tx_init_bas1 = 0.225309379526984,
followup = 0.0353817161706608, followup_sq = -0.000159868670243564,
trial = 0.0447178957320877, trial_sq = 0.00057616846490727,
sex1 = 0.127045833687322, N_bas = 0.00328670775503695, L_bas = -0.0138508823648277,
P_bas = 0.20092890277535, `tx_init_bas1:followup` = -0.00170402147034209)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
show(model)
})
test_that("Pre-Expansion Dose-Response", {
data <- copy(SEQdata)
model <- suppressWarnings(SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome",
list("N", "L", "P"), list("sex"),
method = "dose-response",
options = SEQopts(weighted = TRUE)
))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -4.86763263204364, dose = 0.0587390562206159,
dose_sq = -0.00118380141790317, followup = -0.00431945932798065,
followup_sq = -5.55487092255259e-05, trial = 0.0105381474212626,
trial_sq = 0.000777410850631594, sex1 = 0.143071081126181,
`dose:followup` = 0.000410848850309337, `dose_sq:followup` = 6.47486169924423e-06)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("Post-Expansion Dose-Response", {
data <- copy(SEQdata)
model <- suppressWarnings(SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome",
list("N", "L", "P"), list("sex"),
method = "dose-response",
options = SEQopts(weighted = TRUE, weight.preexpansion = FALSE)
))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -6.28409662777892, dose = 0.0554565105699927,
dose_sq = -0.00107799456270646, followup = 3.18615459075794e-05,
followup_sq = -3.82682414803644e-05, trial = 0.0382644719826706,
trial_sq = 0.000596069931869212, sex1 = 0.140842013054163,
N_bas = 0.00297698449941808, L_bas = -0.0205414282747305,
P_bas = 0.14686055362848, `dose:followup` = 0.000185281011892035,
`dose_sq:followup` = 8.89205007331301e-06)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("Pre-Expansion Censoring", {
data <- copy(SEQdata)
model <- suppressWarnings(SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome",
list("N", "L", "P"), list("sex"),
method = "censoring",
options = SEQopts(weighted = TRUE)
))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -4.79700899537026, tx_init_bas1 = 0.398141240108939,
followup = 0.0136455646615243, followup_sq = 1.10939448747926e-05,
trial = -0.0137282592316101, trial_sq = 0.00113039188898435,
sex1 = 0.0484052979031332, `tx_init_bas1:followup` = 0.0172102945332125)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("Post-Expansion Censoring", {
data <- copy(SEQdata)
model <- suppressWarnings(SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome",
list("N", "L", "P"), list("sex"),
method = "censoring",
options = SEQopts(weighted = TRUE, weight.preexpansion = FALSE)
))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -9.0844372847784, tx_init_bas1 = 0.375383391826688,
followup = 0.0115926847602433, followup_sq = 3.85125072076895e-05,
trial = 0.0668737514863143, trial_sq = 0.000584719074047399,
sex1 = 0.0819971019400167, N_bas = 0.00480761695729425, L_bas = 0.0140302929317927,
P_bas = 0.446176305145455, `tx_init_bas1:followup` = 0.0193363456582428)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
show(model)
})
test_that("Pre-Expansion Excused Censoring", {
data <- copy(SEQdata)
model <- suppressWarnings(SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome",
list("N", "L", "P"), list("sex"),
method = "censoring",
options = SEQopts(
weighted = TRUE, excused = TRUE,
excused.cols = c("excusedZero", "excusedOne"))
))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -5.58369763317808, tx_init_bas1 = 0.201920328328877,
followup = -0.0325635833395319, followup_sq = 0.00170197483126703,
trial = 0.109327651167692, trial_sq = -0.000947001281099358,
`tx_init_bas1:followup` = -0.00739145872905029)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("Post-Expansion Excused Censoring", {
data <- copy(SEQdata)
model <- suppressWarnings(SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome",
list("N", "L", "P"), list("sex"),
method = "censoring",
options = SEQopts(
weighted = TRUE, excused = TRUE,
excused.cols = c("excusedZero", "excusedOne"),
weight.preexpansion = FALSE)
))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -8.76816941042751, tx_init_bas1 = 0.107023621033081,
followup = 0.0271440568550105, followup_sq = -7.42456369201693e-06,
trial = 0.0843245609402986, trial_sq = 0.000216179686613992,
sex1 = 0.273375015185671, N_bas = 0.00220052489616481, L_bas = 0.0205008297547291,
P_bas = 0.397196435394296, `tx_init_bas1:followup` = 0.00471743743001701)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("Pre-Expansion ITT (Cense 1 - LTFU)", {
data <- copy(SEQdata.LTFU)
model <- SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome", list("N", "L", "P"), list("sex"),
method = "ITT",
options = SEQopts(cense = "LTFU", weight.preexpansion = TRUE, fastglm.method = 1))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -21.5961892056874, tx_init_bas1 = -0.00900539101755618,
followup = 0.0253307917110129, followup_sq = -0.000556228315864808,
trial = 0.285534937686781, trial_sq = -0.00136624272388734,
sex1 = -0.190092359484432, N_bas = 0.00658683429207927, L_bas = -0.448911925083965,
P_bas = 1.38926165576551, `tx_init_bas1:followup` = 0.00383610589535659)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("Post-Expansion ITT (Cense 1 - LTFU)", {
data <- copy(SEQdata.LTFU)
model <- SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome", list("N", "L", "P"), list("sex"),
method = "ITT",
options = SEQopts(cense = "LTFU", weight.preexpansion = FALSE, fastglm.method = 1))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -21.594890540512, tx_init_bas1 = -0.0090653673782976,
followup = 0.0253239238090987, followup_sq = -0.000556027956315004,
trial = 0.285516825890481, trial_sq = -0.00136620665011392,
sex1 = -0.190220229415778, N_bas = 0.00658300214440885, L_bas = -0.448958593335045,
P_bas = 1.38913912261648, `tx_init_bas1:followup` = 0.00383774199912364)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
test_that("ITT - Multinomial, Treatment Levels 1,2", {
data <- copy(SEQdata.multitreatment)
model <- SEQuential(data, "ID", "time", "eligible", "tx_init", "outcome", list("N", "L", "P"), list("sex"),
method = "ITT",
options = SEQopts(multinomial = TRUE, treat.level = c(1,2)))
expect_s4_class(model, "SEQoutput")
expected <- list(`(Intercept)` = -38.3542109513865, tx_init_bas2 = -12.8546300967697,
followup = -0.366300912520843, followup_sq = -0.0233872579089223,
trial = 0.272450214929967, trial_sq = -0.00390896317632731,
sex1 = 17.4954834067681, N_bas = 0.0548857956131806, L_bas = 0.80900824688992,
P_bas = 1.45718621133794, `tx_init_bas2:followup` = 1.48015622296358)
test <- as.list(coef(model@outcome.model[[1]][[1]]))
expect_equal(test, expected, tolerance = 1e-2)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.