FanPC.SFM: Apply the FanPC method to the Skew factor model

View source: R/FanPC.SFM.R

FanPC.SFMR Documentation

Apply the FanPC method to the Skew factor model

Description

This function performs Factor Analysis via Principal Component (FanPC) on a given data set. It calculates the estimated factor loading matrix (AF), specific variance matrix (DF), and the mean squared errors.

Usage

FanPC.SFM(data, m, A, D, p)

Arguments

data

A matrix of input data.

m

The number of principal components.

A

The true factor loadings matrix.

D

The true uniquenesses matrix.

p

The number of variables.

Value

A list containing:

AF

Estimated factor loadings.

DF

Estimated uniquenesses.

MSESigmaA

Mean squared error for factor loadings.

MSESigmaD

Mean squared error for uniquenesses.

LSigmaA

Loss metric for factor loadings.

LSigmaD

Loss metric for uniquenesses.

Examples

library(SOPC)
library(matrixcalc)
library(MASS)
library(sn)
library(psych)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
r <- rsn(n*p,0,1)
epsilon=matrix(r,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- FanPC.SFM(data, m, A, D, p)
print(results)

SFM documentation built on April 15, 2025, 5:09 p.m.

Related to FanPC.SFM in SFM...