SFM | R Documentation |
The function supports various distribution types for generating the data, including: Skew-Normal Distribution, Skew-Cauchy Distribution, Skew-t Distribution.
SFM(n, p, m, xi, omega, alpha, distribution_type)
n |
Sample size. |
p |
Sample dimensionality. |
m |
Number of factors. |
xi |
A numerical parameter used exclusively in the "Skew-t" distribution, representing the distribution's xi parameter. |
omega |
A numerical parameter representing the omega parameter of the distribution, which affects the degree of skewness in the distribution. |
alpha |
A numerical parameter representing the alpha parameter of the distribution, which influences the shape of the distribution. |
distribution_type |
The type of distribution. |
A list containing:
data |
A matrix of generated data. |
A |
A matrix representing the factor loadings. |
D |
A diagonal matrix representing the unique variances. |
library(MASS)
library(SOPC)
library(sn)
library(matrixcalc)
library(psych)
n <- 100
p <- 10
m <- 5
xi <- 5
omega <- 2
alpha <- 5
distribution_type <- "Skew-Normal Distribution"
X <- SFM(n, p, m, xi, omega, alpha, distribution_type)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.