R/predict.SIS.R

Defines functions predict.SIS

Documented in predict.SIS

#' Model prediction based on a fitted SIS object.
#' 
#' Similar to the usual predict methods, this function returns predictions from
#' a fitted \code{'SIS'} object.
#' 
#' @export
#' @param object Fitted \code{'SIS'} model object.
#' @param newx Matrix of new values for \code{x} at which predictions are to be
#' made, without the intercept term.
#' @param lambda Penalty parameter \code{lambda} of the final fitted
#' model by (I)SIS at which predictions are required. By default, only the
#' lambda minimizing the criterion \code{tune} is returned.
#' @param which Indices of the penalty parameter \code{lambda} of the final fitted
#' model by (I)SIS at which predictions are required. If supplied, will overwrite 
#' the default \code{lambda} value.
#' @param type Type of prediction required. Type \code{'response'} gives the
#' fitted values for \code{'gaussian'}, fitted probabilities for
#' \code{'binomial'}, fitted mean for \code{'poisson'}, and the fitted relative
#' risk for \code{'cox'}. Type \code{'link'} returns the linear predictors for
#' \code{'binomial'}, \code{'poisson'} and \code{'cox'} models; for
#' \code{'gaussian'} models it is equivalent to type \code{'response'}. Type
#' \code{'class'} applies only to \code{'binomial'} models, and produces the
#' class label corresponding to the maximum probability (0-1 labels).
#' @param \dots Not used. Other arguments to predict.
#' @return The object returned depends on type.
#' @author Jianqing Fan, Yang Feng, Diego Franco Saldana, Richard Samworth, and
#' Yichao Wu
#' @seealso \code{\link{SIS}}
#' @references 
#' Diego Franco Saldana and Yang Feng (2018) SIS: An R package for Sure Independence Screening in
#' Ultrahigh Dimensional Statistical Models, \emph{Journal of Statistical Software}, \bold{83}, 2, 1-25.
#' 
#' Jianqing Fan and Jinchi Lv (2008) Sure Independence Screening
#' for Ultrahigh Dimensional Feature Space (with discussion). \emph{Journal of
#' Royal Statistical Society B}, \bold{70}, 849-911.
#' 
#' Jianqing Fan and Rui Song (2010) Sure Independence Screening in Generalized
#' Linear Models with NP-Dimensionality.  \emph{The Annals of Statistics},
#' \bold{38}, 3567-3604.
#' 
#' Jianqing Fan, Richard Samworth, and Yichao Wu (2009) Ultrahigh Dimensional
#' Feature Selection: Beyond the Linear Model. \emph{Journal of Machine
#' Learning Research}, \bold{10}, 2013-2038.
#' 
#' Jianqing Fan, Yang Feng, and Yichao Wu (2010) High-dimensional Variable
#' Selection for Cox Proportional Hazards Model. \emph{IMS Collections},
#' \bold{6}, 70-86.
#' 
#' Jianqing Fan, Yang Feng, and Rui Song (2011) Nonparametric Independence
#' Screening in Sparse Ultrahigh Dimensional Additive Models. \emph{Journal of
#' the American Statistical Association}, \bold{106}, 544-557.
#' 
#' Diego Franco Saldana and Yang Feng (2014) SIS: An R package for Sure Independence Screening in
#' Ultrahigh Dimensional Statistical Models, \emph{Journal of Statistical Software}.
#' @keywords models
#' @examples
#' 
#' 
#' set.seed(0)
#' n = 400; p = 50; rho = 0.5
#' corrmat = diag(rep(1-rho, p)) + matrix(rho, p, p)
#' corrmat[,4] = sqrt(rho)
#' corrmat[4, ] = sqrt(rho)
#' corrmat[4,4] = 1
#' corrmat[,5] = 0
#' corrmat[5, ] = 0
#' corrmat[5,5] = 1
#' cholmat = chol(corrmat)
#' x = matrix(rnorm(n*p, mean=0, sd=1), n, p)
#' x = x%*%cholmat
#' testX = matrix(rnorm(10*p, mean=0, sd=1), nrow=10, ncol=p)
#' 
#' # gaussian response 
#' set.seed(1)
#' b = c(4,4,4,-6*sqrt(2),4/3)
#' y=x[, 1:5]%*%b + rnorm(n)
#' model1=SIS(x, y, family='gaussian', tune='bic', varISIS='aggr', seed=11)
#' 
#' predict(model1, testX, type='response')
#' predict(model1, testX, which=1:10, type='response')
#' 
#' \dontrun{
#' # binary response 
#' set.seed(2)
#' feta = x[, 1:5]%*%b; fprob = exp(feta)/(1+exp(feta))
#' y = rbinom(n, 1, fprob)
#' model2=SIS(x, y, family='binomial', tune='bic', varISIS='aggr', seed=21)
#' 
#' predict(model2, testX, type='response')
#' predict(model2, testX, type='link')
#' predict(model2, testX, type='class')
#' 
#' predict(model2, testX, which=1:10, type='response')
#' predict(model2, testX, which=1:10, type='link')
#' predict(model2, testX, which=1:10, type='class')
#' 
#' # poisson response
#' set.seed(3)
#' b = c(0.6,0.6,0.6,-0.9*sqrt(2))
#' myrates = exp(x[, 1:4]%*%b)
#' y = rpois(n, myrates)
#' model3=SIS(x, y, family='poisson', penalty = 'lasso',tune='bic', varISIS='aggr', seed=31)
#' 
#' predict(model3, testX, type='response')
#' predict(model3, testX, type='link')
#' }
#'
#' 
#' 
predict.SIS <- function(object, newx, lambda = object$lambda, which = NULL, type = c("response", "link", "class"), ...) {
  if (!is.null(which)){
    lambda = object$fit$lambda[which]
  }
  if (class(object$fit)[1] == "ncvreg") {
    pred = predict(object$fit, newx[, object$ix0], lambda = lambda, type = type) 
  } else{
    pred = predict(object$fit, newx[, object$ix0], s = lambda, type = type) 
  }
  return(pred)
}
# {
#     if (class(object$fit)[1] == "cv.ncvreg") {
#         family = object$fit$fit$family
#         coefs = object$fit$fit$beta[-1, s]
#         intercept = object$fit$fit$beta[1, s]
#     } else if (class(object$fit)[1] == "cv.glmnet") {
#         family = switch(class(object$fit$glmnet.fit)[1], elnet = "gaussian", lognet = "binomial", fishnet = "poisson", 
#             coxnet = "cox")
#         coefs = object$fit$glmnet.fit$beta[, s]
#         intercept = object$fit$glmnet.fit$a0[s]
#     } else if (class(object$fit)[1] == "ncvreg") {
#         family = object$fit$family
#         coefs = object$fit$beta[-1, s]
#         intercept = object$fit$beta[1, s]
#     } else {
#         family = switch(class(object$fit)[1], elnet = "gaussian", lognet = "binomial", fishnet = "poisson", 
#             coxnet = "cox")
#         coefs = object$fit$beta[, s]
#         intercept = object$fit$a0[s]
#     }
#     
#     newx = newx[, object$ix]
#     
#     if (length(coefs) == 1 || length(newx) == 1) 
#         eta = newx * coefs else if (length(coefs) == length(s)) 
#         eta = newx %*% t(coefs) else eta = newx %*% coefs
#     
#     if (family != "cox") 
#         eta = t(intercept + t(eta))
#     
#     if (family == "gaussian") 
#         pihat = eta
#     if (family == "binomial") 
#         pihat = exp(eta)/(1 + exp(eta))
#     if (family %in% c("poisson", "cox")) 
#         pihat = exp(eta)
#     
#     if (match.arg(type) == "response") 
#         return(pihat)
#     if (match.arg(type) == "link") 
#         return(eta)
#     if (match.arg(type) == "class" && family == "binomial") 
#         return(matrix(as.integer(eta > 0), ncol = length(s)))
#     if (match.arg(type) == "class" && family == "poisson") 
#         stop("Choose response for Poisson, or choose binomial for response")
#     
# }

Try the SIS package in your browser

Any scripts or data that you put into this service are public.

SIS documentation built on Feb. 14, 2018, 1:01 a.m.