Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(SLOPE)
x <- heart$x
y <- heart$y
fit <- SLOPE(x, y, family = "binomial", lambda = "bh")
## ----fig.cap = "Regularization path for a binomial regression model fit to the heart data set.", fig.width = 6, fig.height = 5----
plot(fit)
## -----------------------------------------------------------------------------
set.seed(924)
x <- bodyfat$x
y <- bodyfat$y
tune <- trainSLOPE(
x,
y,
q = c(0.1, 0.2),
number = 5,
solver = "admm",
repeats = 2
)
## ----fig.cap = "Model tuning results from Gaussian SLOPE on the bodyfat dataset.", fig.width = 5.5, fig.height = 3----
plot(tune, measure = "mae") # plot mean absolute error
## -----------------------------------------------------------------------------
tune
## ----fig.cap = "Control of false discovery rate using SLOPE.", fig.width = 4----
# proportion of real signals
q <- seq(0.05, 0.5, length.out = 20)
fdr <- double(length(q))
set.seed(1)
for (i in seq_along(q)) {
n <- 1000
p <- n / 2
alpha <- 1
problem <- SLOPE:::randomProblem(n, p, q = q[i], alpha = alpha)
x <- problem$x
y <- problem$y
signals <- problem$nonzero
fit <- SLOPE(x,
y,
lambda = "gaussian",
solver = "admm",
q = 0.1,
alpha = alpha / sqrt(n)
)
selected_slope <- which(fit$nonzeros)
V <- length(setdiff(selected_slope, signals))
R <- length(selected_slope)
fdr[i] <- V / R
}
library(ggplot2)
ggplot(mapping = aes(q, fdr)) +
geom_hline(yintercept = 0.1, lty = 3) +
geom_line() +
geom_point() +
theme_minimal() +
labs(y = "False Discovery Rate")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.