inst/doc/SNSeg.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ---- echo = FALSE, message = FALSE-------------------------------------------
knitr::opts_chunk$set(collapse = T, comment = "#>")
options(tibble.print_min = 4L, tibble.print_max = 4L)
library(SNSeg)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # Please run the following function before running examples:
#  mix_GauGPD <- function(u,p,trunc_r,gpd_scale,gpd_shape){
#    indicator <- u<p
#    rv <- rep(0, length(u))
#    rv[indicator>0] <- qtruncnorm(u[indicator>0]/p,a=-Inf,b=trunc_r)
#    rv[indicator<=0] <- qgpd((u[indicator<=0]-p)/(1-p), loc=trunc_r, scale=gpd_scale,shape=gpd_shape)
#    return(rv)
#  }

## -----------------------------------------------------------------------------
set.seed(7)
n <- 2000
reptime <- 2
cp_sets <- round(n*c(0,cumsum(c(0.5,0.25)),1))
mean_shift <- c(0.4,0,0.4)
rho <- -0.7
ts <- MAR(n, reptime, rho)
no_seg <- length(cp_sets)-1
for(index in 1:no_seg){ # Mean shift
  tau1 <- cp_sets[index]+1   
  tau2 <- cp_sets[index+1]
  ts[tau1:tau2,] <- ts[tau1:tau2,] + mean_shift[index]
}
ts <- ts[,2]
# grid_size undefined
result <- SNSeg_Uni(ts, paras_to_test = "mean", confidence = 0.9,
                    grid_size_scale = 0.05, grid_size = NULL, 
                    plot_SN = FALSE, est_cp_loc = FALSE)
# grid_size defined & generate time series segmentation plot
result <- SNSeg_Uni(ts, paras_to_test = "mean", confidence = 0.9,
                    grid_size_scale = 0.05, grid_size = 116, 
                    plot_SN = TRUE, est_cp_loc = TRUE)
# Estimated change-point locations
result$est_cp
# Parameter estimates (mean) of each segment
SNSeg_estimate(result)
# plot the SN-based test statistic
SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
                       critical_loc = TRUE)

## -----------------------------------------------------------------------------
summary(result)

## -----------------------------------------------------------------------------
print(result)

## -----------------------------------------------------------------------------
plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  set.seed(7)
#  ts <- MAR_Variance(2, "V1")
#  ts <- ts[,2]
#  # grid_size defined
#  result <- SNSeg_Uni(ts, paras_to_test = "variance", confidence = 0.9,
#                      grid_size_scale = 0.05, grid_size = NULL,
#                      plot_SN = FALSE, est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (variance) of each segment
#  SNSeg_estimate(result)
#  # plot the SN-based test statistic
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  set.seed(7)
#  ts <- MAR_Variance(2, "A3")
#  ts <- ts[,2]
#  # grid_size defined
#  result <- SNSeg_Uni(ts, paras_to_test = "acf", confidence = 0.9,
#            grid_size_scale = 0.05, grid_size = 92, plot_SN = FALSE,
#            est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (acf) of each segment
#  SNSeg_estimate(result)
#  # plot the SN-based test statistic
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  library(mvtnorm)
#  set.seed(7)
#  n <- 1000
#  sigma_cross <- list(4*matrix(c(1,0.8,0.8,1), nrow=2),
#                      matrix(c(1,0.2,0.2,1), nrow=2),
#                      matrix(c(1,0.8,0.8,1), nrow=2))
#  cp_sets <- round(c(0,n/3,2*n/3,n))
#  noCP <- length(cp_sets)-2
#  rho_sets <- rep(0.5, noCP+1)
#  ts <- MAR_MTS_Covariance(n, 2, rho_sets, cp_sets, sigma_cross)
#  ts <- ts[1][[1]]
#  # grid_size defined
#  result <- SNSeg_Uni(ts, paras_to_test = "bivcor", confidence = 0.9,
#                      grid_size_scale = 0.05, grid_size = 77,
#                      plot_SN = FALSE, est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (bivariate correlation) of each segment
#  SNSeg_estimate(result)
#  # plot the SN-based test statistic
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  library(truncnorm)
#  library(evd)
#  set.seed(7)
#  n <- 1000
#  cp_sets <- c(0,n/2,n)
#  noCP <- length(cp_sets)-2
#  reptime <- 2
#  rho <- 0.2
#  # AR time series with no change-point (mean, var)=(0,1)
#  ts <- MAR(n, reptime, rho)*sqrt(1-rho^2)
#  trunc_r <- 0
#  p <- pnorm(trunc_r)
#  gpd_scale <- 2
#  gpd_shape <- 0.125
#  for(ts_index in 1:reptime){
#    ts[(cp_sets[2]+1):n, ts_index] <- mix_GauGPD(pnorm(ts[(cp_sets[2]+1):n, ts_index]),
#  p,trunc_r,gpd_scale,gpd_shape)
#  }
#  ts <- ts[,2]
#  # grid_size undefined
#  # test in 90% quantile
#  result <- SNSeg_Uni(ts, paras_to_test = 0.9, confidence = 0.9,
#                      grid_size_scale = 0.066, grid_size = NULL,
#                      plot_SN = FALSE, est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (90th quantile) of each segment
#  SNSeg_estimate(result)
#  # plot the SN-based test statistic
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  set.seed(7)
#  n <- 500
#  reptime <- 2
#  cp_sets <- round(n*c(0,cumsum(c(0.5,0.25)),1))
#  mean_shift <- c(0.4,0,0.4)
#  rho <- -0.7
#  ts <- MAR(n, reptime, rho)
#  no_seg <- length(cp_sets)-1
#  for(index in 1:no_seg){ # Mean shift
#    tau1 <- cp_sets[index]+1
#    tau2 <- cp_sets[index+1]
#    ts[tau1:tau2,] <- ts[tau1:tau2,] + mean_shift[index]
#  }
#  ts <- ts[,2]
#  # Define a general functional for the input 'paras_to_test'
#  paras_to_test = function(ts){
#    mean(ts)
#  }
#  result.SNCP.general <- SNSeg_Uni(ts, paras_to_test = paras_to_test,
#                                   confidence = 0.9, grid_size_scale = 0.05,
#                                   grid_size = NULL, plot_SN = FALSE,
#                                   est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result.SNCP.general$est_cp
#  # Parameter estimates (general functional) of each segment
#  SNSeg_estimate(result.SNCP.general)
#  # plot the SN-based test statistic
#  SN_stat <- max_SNsweep(result.SNCP.general, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  set.seed(7)
#  n <- 1000
#  cp_sets <- c(0,333,667,1000)
#  no_seg <- length(cp_sets)-1
#  rho <- 0
#  # AR time series with no change-point (mean, var)=(0,1)
#  ts <- MAR(n, 2, rho)*sqrt(1-rho^2)
#  no_seg <- length(cp_sets)-1
#  sd_shift <- c(1,1.6,1)
#  for(index in 1:no_seg){ # Mean shift
#    tau1 <- cp_sets[index]+1
#    tau2 <- cp_sets[index+1]
#    ts[tau1:tau2,] <- ts[tau1:tau2,]*sd_shift[index]
#  }
#  d <- 2
#  ts <- ts[,2]
#  
#  # Test in 90th and 95th quantile with grid_size undefined
#  result <- SNSeg_Uni(ts, paras_to_test = c(0.9, 0.95), confidence = 0.9,
#                      grid_size_scale = 0.05, grid_size = NULL,
#                      plot_SN = FALSE, est_cp_loc = FALSE)
#  
#  # Test in 90th quantile and the variance with grid_size undefined
#  result <- SNSeg_Uni(ts, paras_to_test = c(0.9, 'variance'),
#                      confidence = 0.95, grid_size_scale = 0.078,
#                      grid_size = NULL, plot_SN = FALSE,
#                      est_cp_loc = FALSE)
#  
#  # Test in 90th quantile, variance and acf with grid_size undefined
#  result <- SNSeg_Uni(ts, paras_to_test = c(0.9,'variance', "acf"),
#                      confidence = 0.9, grid_size_scale = 0.064,
#                      grid_size = NULL, plot_SN = TRUE,
#                      est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # Test in 60th quantile, mean, variance and acf with grid_size defined
#  result.last <- SNSeg_Uni(ts, paras_to_test = c(0.6, 'mean', "variance",
#                      "acf"), confidence = 0.9, grid_size_scale = 0.05,
#                      grid_size = 83, plot_SN = FALSE, est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result.last$est_cp
#  # Parameter estimates (of the last example) of each segment
#  SNSeg_estimate(result.last)
#  # SN-based test statistic segmentation plot
#  SN_stat <- max_SNsweep(result.last, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # Please run this function before running examples:
#  exchange_cor_matrix <- function(d, rho){
#    tmp <- matrix(rho, d, d)
#    diag(tmp) <- 1
#    return(tmp)
#  }

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  library(mvtnorm)
#  set.seed(10)
#  d <- 5
#  n <- 1000
#  cp_sets <- round(n*c(0,cumsum(c(0.075,0.3,0.05,0.1,0.05)),1))
#  mean_shift <- c(-3,0,3,0,-3,0)/sqrt(d)
#  mean_shift <- sign(mean_shift)*ceiling(abs(mean_shift)*10)/10
#  rho_sets <- 0.5
#  sigma_cross <- list(exchange_cor_matrix(d,0))
#  ts <- MAR_MTS_Covariance(n, 2, rho_sets, cp_sets=c(0,n), sigma_cross)
#  noCP <- length(cp_sets)-2
#  no_seg <- length(cp_sets)-1
#  for(rep_index in 1:2){
#    for(index in 1:no_seg){ # Mean shift
#      tau1 <- cp_sets[index]+1
#      tau2 <- cp_sets[index+1]
#      ts[[rep_index]][,tau1:tau2] <- ts[[rep_index]][,tau1:tau2] + mean_shift[index]
#      }
#  }
#  ts <- ts[1][[1]]
#  
#  # grid_size undefined
#  result <- SNSeg_Multi(ts, paras_to_test = "mean", confidence = 0.95,
#                        grid_size_scale = 0.079, grid_size = NULL,
#                        plot_SN = FALSE, est_cp_loc = TRUE)
#  # grid_size defined
#  result <- SNSeg_Multi(ts, paras_to_test = "mean", confidence = 0.99,
#                        grid_size_scale = 0.05, grid_size = 65,
#                        plot_SN = FALSE, est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (multivariate mean) of each segment
#  SNSeg_estimate(result)
#  # SN-based test statistic segmentation plot
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  par(mfrow=c(2,3))
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  library(mvtnorm)
#  set.seed(10)
#  reptime <- 2
#  d <- 4
#  n <- 1000
#  sigma_cross <- list(exchange_cor_matrix(d,0.2),
#                      2*exchange_cor_matrix(d,0.5),
#                      4*exchange_cor_matrix(d,0.5))
#  rho_sets <- c(0.3,0.3,0.3)
#  mean_shift <- c(0,0,0) # with mean change
#  cp_sets <- round(c(0,n/3,2*n/3,n))
#  ts <- MAR_MTS_Covariance(n, reptime, rho_sets, cp_sets, sigma_cross)
#  noCP <- length(cp_sets)-2
#  no_seg <- length(cp_sets)-1
#  for(rep_index in 1:reptime){
#    for(index in 1:no_seg){ # Mean shift
#      tau1 <- cp_sets[index]+1
#      tau2 <- cp_sets[index+1]
#      ts[[rep_index]][,tau1:tau2] <- ts[[rep_index]][,tau1:tau2] +
#        mean_shift[index]
#      }
#  }
#  ts <- ts[[1]]
#  
#  # grid_size undefined
#  result <- SNSeg_Multi(ts, paras_to_test = "covariance",
#                        confidence = 0.9, grid_size_scale = 0.05,
#                        grid_size = NULL, plot_SN = FALSE, est_cp_loc = FALSE)
#  # grid_size defined
#  result <- SNSeg_Multi(ts, paras_to_test = "covariance",
#                        confidence = 0.9, grid_size_scale = 0.05,
#                        grid_size = 81, plot_SN = FALSE,
#                        est_cp_loc = TRUE)
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (covariance estimate) of each segment
#  SNSeg_estimate(result)
#  # SN-based test statistic segmentation plot
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  par(mfrow=c(1,1))
#  plot(result, cpts.col = 'red')

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  n <- 600
#  p <- 100
#  nocp <- 5
#  cp_sets <- round(seq(0,nocp+1,1)/(nocp+1)*n)
#  num_entry <- 5
#  kappa <- sqrt(4/5) # Wang et al(2020)
#  mean_shift <- rep(c(0,kappa),100)[1:(length(cp_sets)-1)]
#  set.seed(1)
#  ts <- matrix(rnorm(n*p,0,1),n,p)
#  no_seg <- length(cp_sets)-1
#  for(index in 1:no_seg){ # Mean shift
#    tau1 <- cp_sets[index]+1
#    tau2 <- cp_sets[index+1]
#    ts[tau1:tau2,1:num_entry] <- ts[tau1:tau2,1:num_entry] +
#      mean_shift[index] # sparse change
#  }
#  # SN segmentation plot
#  # grid_size undefined (plot the first 3 time series)
#  result <- SNSeg_HD(ts, confidence = 0.9, grid_size_scale = 0.05,
#                     grid_size = NULL, plot_SN = FALSE, est_cp_loc = TRUE,
#                     ts_index = c(1:3))
#  # grid_size defined (plot the 1st, 3rd and 5th time series)
#  result <- SNSeg_HD(ts, confidence = 0.9, grid_size_scale  = 0.05,
#                     grid_size = 52, plot_SN = FALSE, est_cp_loc = TRUE,
#                     ts_index = c(1,3,5))
#  # Estimated change-point locations
#  result$est_cp
#  # Parameter estimates (high-dimensional means) of each segment
#  summary.stat <- SNSeg_estimate(result)
#  # SN-based test statistic segmentation plot
#  SN_stat <- max_SNsweep(result, plot_SN = TRUE, est_cp_loc = TRUE,
#                         critical_loc = TRUE)

## ----echo=TRUE, eval=FALSE----------------------------------------------------
#  # built-in functions
#  # summary statistic
#  summary(result)
#  # print
#  print(result)
#  # plot
#  plot(result, cpts.col = 'red', ts_index = c(1:3))

Try the SNSeg package in your browser

Any scripts or data that you put into this service are public.

SNSeg documentation built on June 22, 2024, 10:50 a.m.