SPREDA: Statistical Package for Reliability Data Analysis

Share:

The Statistical Package for REliability Data Analysis (SPREDA) implements recently-developed statistical methods for the analysis of reliability data. Modern technological developments, such as sensors and smart chips, allow us to dynamically track product/system usage as well as other environmental variables, such as temperature and humidity. We refer to these variables as dynamic covariates. The package contains functions for the analysis of time-to-event data with dynamic covariates and degradation data with dynamic covariates. The package also contains functions that can be used for analyzing time-to-event data with right censoring, and with left truncation and right censoring. Financial support from NSF and DuPont are acknowledged.

Author
Yili Hong, Yimeng Xie, and Zhibing Xu
Date of publication
2014-09-25 17:44:48
Maintainer
Yili Hong <yilihong@vt.edu>
License
GPL-2
Version
1.0

View on CRAN

Man pages

ce.dat.prep
Create an object for cumulative exposure
cls
Mixed primal-dual bases algorithm for estimation of...
Coatingenv
Dynamic covariates for the coating data.
Coatingout
Dynamic covariates for coating data
deglmx
Functions for estimating parameters in the linear/nonlinear...
i.spline.x
i_spline basis
kaplan.meier.location
Kaplan-Meier Location
lifedata.MLE
Parametric Fitting for Lifetime Data
lifetime.mle
Calculate MLE for Lifetime Distribution
MIC.splines.basis
Splines basis functions
m.spline.x
M_splines basis
plev
The Standard Largest Extreme Value Distribution
plotdeglmx
Plot function for the class of "deglmx".
Prod2.fai.dat
Dataset of failure information of Product 2.
Prod2.xt.dat
Dataset of covariate information of Produce 2.
psev
The Standard Smallest Extreme Value Distribution
shock
Shock Absorber Failure Data
SPREDA-package
Statistical Package for Reliability Data Analysis
summary.Lifedata.MLE
Summaries of "Lifedata.MLE" Object
testdata
Testdata

Files in this package

SPREDA
SPREDA/NAMESPACE
SPREDA/data
SPREDA/data/Coatingenv.rda
SPREDA/data/testdata.rda
SPREDA/data/shock.rda
SPREDA/data/Prod2.xt.dat.rda
SPREDA/data/Coatingout.rda
SPREDA/data/Prod2.fai.dat.rda
SPREDA/R
SPREDA/R/print.summary.Lifedata.MLE.R
SPREDA/R/print.deglmx.R
SPREDA/R/MIC.splines.basis.R
SPREDA/R/psev.R
SPREDA/R/kaplan.meier.location.R
SPREDA/R/miniusloglik.sev.R
SPREDA/R/logLik.Lifedata.MLE.R
SPREDA/R/summary.Lifedata.MLE.R
SPREDA/R/getCov.R
SPREDA/R/miniusloglik.lev.wts.R
SPREDA/R/data.pre.fun.R
SPREDA/R/mle.obj.to.fit.obj.R
SPREDA/R/dsev.R
SPREDA/R/rlev.R
SPREDA/R/miniusloglik.ce.xt.lev.R
SPREDA/R/match.dat.fun.R
SPREDA/R/optim.step2.2.R
SPREDA/R/optim.step1.2.R
SPREDA/R/ce.dat.prep.R
SPREDA/R/qlev.R
SPREDA/R/print.Lifedata.MLE.R
SPREDA/R/miniusloglik.ce.xt.sev.R
SPREDA/R/Lifedata.MLE.R
SPREDA/R/SPREDA-internal.R
SPREDA/R/miniusloglik.logis.wts.R
SPREDA/R/m.spline.x.R
SPREDA/R/xmat.obj.to.xmat.R
SPREDA/R/cls.R
SPREDA/R/minus.loglik.lme.R
SPREDA/R/deglmx.R
SPREDA/R/coef.deglmx.MLE.R
SPREDA/R/Px.R
SPREDA/R/getRanName.R
SPREDA/R/miniusloglik.ce.xt.logis.R
SPREDA/R/optim.ftn.2.R
SPREDA/R/miniusloglik.sev.wts.R
SPREDA/R/miniusloglik.normal.wts.R
SPREDA/R/plot.MICsplines.R
SPREDA/R/i.spline.x.R
SPREDA/R/rsev.R
SPREDA/R/clme.R
SPREDA/R/getnames.R
SPREDA/R/qsev.R
SPREDA/R/lifetime.mle.R
SPREDA/R/coefinitial.ftn.R
SPREDA/R/plotdeglmx.R
SPREDA/R/plev.R
SPREDA/R/miniusloglik.ce.xt.norm.R
SPREDA/R/minus.log.lik.nlme.R
SPREDA/R/xmat.to.cumsum.R
SPREDA/R/coef.Lifedata.MLE.R
SPREDA/R/sqrt.mat.R
SPREDA/R/dlev.R
SPREDA/MD5
SPREDA/DESCRIPTION
SPREDA/man
SPREDA/man/cls.Rd
SPREDA/man/psev.Rd
SPREDA/man/plev.Rd
SPREDA/man/ce.dat.prep.Rd
SPREDA/man/summary.Lifedata.MLE.Rd
SPREDA/man/deglmx.Rd
SPREDA/man/MIC.splines.basis.Rd
SPREDA/man/Coatingenv.Rd
SPREDA/man/lifetime.mle.Rd
SPREDA/man/m.spline.x.Rd
SPREDA/man/Prod2.xt.dat.Rd
SPREDA/man/Prod2.fai.dat.Rd
SPREDA/man/SPREDA-package.Rd
SPREDA/man/plotdeglmx.Rd
SPREDA/man/Coatingout.Rd
SPREDA/man/testdata.Rd
SPREDA/man/lifedata.MLE.Rd
SPREDA/man/i.spline.x.Rd
SPREDA/man/shock.Rd
SPREDA/man/kaplan.meier.location.Rd