Description Usage Arguments Details Value Author(s) References See Also Examples
sensitivity assesses the sensitivity of an effect estimate to an omitted confounder.
| 1 2 3 4 | 	sensitivity(obj, seq.eval=seq(-1,1,.1), quant.eval=c(0.025,0.5,0.975), 
		color=TRUE, legend.pos="topleft", label.main="Sensitivity Analysis",
		label.x="Sensitivity Parameter",  label.y="Outcome")	
	
 | 
| obj | A fitted SVMMatch object. | 
| seq.eval | Values at which to set the omitted confounder, in the range [-1, +1]. | 
| quant.eval | Values at which to plot the posterior density as a function of the omitted confounder. By default, a solid line is drawn through the posterior medians, with dashed lines at the 2.5th and 97.5th percentiles. | 
| color | Whether to plot in color or black and white. TRUE or FALSE. | 
| legend.pos | Where to place the margin.  See the help file for  | 
| label.main | Main title for figure | 
| label.x | X-axis label. | 
| label.y | Y-axis label. | 
Conducts a sensitivity analysis using an SVMMatch object. An unoberseved parameter, u, that predicts the treatment assignment is introduced and varied between -1 and 1. For each value of u, balancing weights are constructed and the posterior density of the effect estimate recalcluated, with u=0 returning the results from the original fit. The figure gives the researcher a sense as to how sensitive the effect estimate is to omitted confounders.
| sens.mat | A matrix of the posterior estimates as a function of the unobserved confounder. | 
Marc Ratkovic
Ratkovic, Marc. 2014. "Balancing within the Margin: Causal Effect Estimation with Support Vector Machines." Working paper.
svmmatch, legend
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run: 
##See svmmatch() for a full implementation
##Load data
	data("LaLonde")
	Data1<-LaLonde
	Data1<-Data1[Data1$exper==0|Data1$treat==1,]
	attach(Data1)	
##Format X matrix
	varnames<-c("age","educ","black","married","nodegr","hisp",
		"re75","re74")
	X<-cbind(Data1[,varnames],Data1$re75==0,Data1$re74==0)
	X<-as.matrix(X)
##Fit model
	set.seed(1)
	m1.param<-svmmatch(treat, X, dv=re78, burnin=100, gibbs=100, thin=5)
##Sensitivity analysis (Takes a little longer)
	sens1<-sensitivity(m1.param)
	
## End(Not run)
 | 
Warning messages:
1: In par(par.old) : graphical parameter "cin" cannot be set
2: In par(par.old) : graphical parameter "cra" cannot be set
3: In par(par.old) : graphical parameter "csi" cannot be set
4: In par(par.old) : graphical parameter "cxy" cannot be set
5: In par(par.old) : graphical parameter "din" cannot be set
6: In par(par.old) : graphical parameter "page" cannot be set
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.