Description Usage Arguments Details Value Author(s) References See Also Examples
Independent semi-competing risks data can be analyzed using hierarchical models. Markov or semi-Markov assumption can be adopted for the conditional hazard function for time to the terminal event given time to non-terminal event.
1 2 |
Formula |
a |
data |
a data.frame in which to interpret the variables named in |
model |
a character value that specifies the type of a model based on the assumption on h_3: "semi-Markov" or "Markov". |
frailty |
a logical value to determine whether to include the subject-specific shared frailty term, γ, into the model. |
na.action |
how NAs are treated. See |
subset |
a specification of the rows to be used: defaults to all rows. See |
See BayesID_HReg
for a detailed description of the models.
FreqID_HReg
returns an object of class Freq_HReg
.
Sebastien Haneuse and Kyu Ha Lee
Maintainer: Kyu Ha Lee <klee15239@gmail.com>
Lee, K. H., Haneuse, S., Schrag, D., and Dominici, F. (2015),
Bayesian semiparametric analysis of semicompeting risks data:
investigating hospital readmission after a pancreatic cancer diagnosis, Journal of the Royal Statistical Society: Series C, 64, 2, 253-273.
Alvares, D., Haneuse, S., Lee, C., Lee, K. H. (2019),
SemiCompRisks: An R package for the analysis of independent and cluster-correlated semi-competing risks data, The R Journal, 11, 1, 376-400.
print.Freq_HReg
, summary.Freq_HReg
, predict.Freq_HReg
, BayesID_HReg
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
# loading a data set
data(scrData)
form <- Formula(time1 + event1 | time2 + event2 ~ x1 + x2 + x3 | x1 + x2 | x1 + x2)
fit_WB <- FreqID_HReg(form, data=scrData, model="semi-Markov")
fit_WB
summ.fit_WB <- summary(fit_WB); names(summ.fit_WB)
summ.fit_WB
pred_WB <- predict(fit_WB, tseq=seq(from=0, to=30, by=5))
plot(pred_WB, plot.est="Haz")
plot(pred_WB, plot.est="Surv")
## End(Not run)
|
Loading required package: MASS
Loading required package: survival
Loading required package: Formula
Analysis of independent semi-competing risks data
semi-Markov assumption for h3
Confidence level: 0.05
Variance of frailties, theta:
Estimate SE LL UL
0.739 0.081 0.596 0.916
Regression coefficients:
Estimate SE LL UL
x1 0.234 0.038 0.160 0.308
x2 0.604 0.041 0.523 0.685
x3 -0.129 0.037 -0.202 -0.056
x1 0.404 0.062 0.283 0.525
x2 0.723 0.066 0.593 0.853
x1 0.595 0.054 0.490 0.700
x2 0.742 0.056 0.633 0.852
Note: Covariates are arranged in order of transition number, 1->3.
[1] "coef" "theta" "h0" "code" "logLike"
[6] "nP" "class" "conf.level"
Analysis of independent semi-competing risks data
semi-Markov assumption for h3
Confidence level: 0.05
Hazard ratios:
beta1 LL UL beta2 LL UL beta3 LL UL
x1 1.264 1.174 1.361 1.498 1.327 1.691 1.813 1.632 2.014
x2 1.829 1.687 1.983 2.061 1.810 2.346 2.101 1.883 2.345
x3 0.879 0.817 0.945 NA NA NA NA NA NA
Variance of frailties:
Estimate LL UL
theta 0.739 0.596 0.916
Baseline hazard function components:
h1-PM LL UL h2-PM LL UL h3-PM LL
Weibull: log-kappa -1.170 -1.262 -1.079 -2.869 -3.049 -2.690 -2.792 -2.959
Weibull: log-alpha -0.536 -0.597 -0.475 -0.323 -0.410 -0.235 -0.510 -0.578
UL
Weibull: log-kappa -2.625
Weibull: log-alpha -0.442
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.