Description Usage Arguments Value Author(s) References See Also Examples
View source: R/initiate.startValues_HReg.R
The function initiates starting values for a single chain for hazard regression (HReg) models. Users are allowed to set some non-null values to starting values for a set of parameters. The function will automatically generate starting values for any parameters whose values are not specified.
1 2 3 4 5 6 7 8 9 10 | initiate.startValues_HReg(Formula, data, model, id = NULL, nChain=1,
beta1 = NULL, beta2 = NULL, beta3 = NULL, beta = NULL,
gamma.ji = NULL, theta = NULL,
V.j1 = NULL, V.j2 = NULL, V.j3 = NULL, V.j = NULL,
WB.alpha = NULL, WB.kappa = NULL,
PEM.lambda1=NULL, PEM.lambda2=NULL, PEM.lambda3=NULL, PEM.lambda=NULL,
PEM.s1=NULL, PEM.s2=NULL, PEM.s3=NULL, PEM.s=NULL,
PEM.mu_lam=NULL, PEM.sigSq_lam=NULL,
MVN.SigmaV = NULL, Normal.zeta = NULL,
DPM.class = NULL, DPM.tau = NULL)
|
Formula |
For |
data |
a data.frame in which to interpret the variables named in the formula(s) in |
model |
a character vector that specifies the type of components in a model. Check |
id |
a vector of cluster information for |
nChain |
The number of chains. |
beta1 |
starting values of β_1 for |
beta2 |
starting values of β_2 for |
beta3 |
starting values of β_3 for |
beta |
starting values of β for |
gamma.ji |
starting values of γ for |
theta |
starting values of θ for |
V.j1 |
starting values of V_{j1} for |
V.j2 |
starting values of V_{j2} for |
V.j3 |
starting values of V_{j3} for |
V.j |
starting values of V_{j} for |
WB.alpha |
starting values of the Weibull parameters, α_g for |
WB.kappa |
starting values of the Weibull parameters, κ_g for |
PEM.lambda1 |
starting values of the PEM parameters, λ_1 for |
PEM.lambda2 |
starting values of the PEM parameters, λ_2 for |
PEM.lambda3 |
starting values of the PEM parameters, λ_3 for |
PEM.lambda |
starting values of λ for |
PEM.s1 |
starting values of the PEM parameters, s_1 for |
PEM.s2 |
starting values of the PEM parameters, s_2 for |
PEM.s3 |
starting values of the PEM parameters, s_3 for |
PEM.s |
starting values of s for |
PEM.mu_lam |
starting values of the PEM parameters, μ_{λ,g} for |
PEM.sigSq_lam |
starting values of the PEM parameters, σ_{λ,g}^2 for |
MVN.SigmaV |
starting values of Σ_V in DPM models for |
Normal.zeta |
starting values of ζ in DPM models for |
DPM.class |
starting values of the class membership in DPM models for |
DPM.tau |
starting values of τ in DPM models for |
initiate.startValues_HReg
returns a list containing starting values for a sigle chain that can be used for BayesID_HReg
and BayesSurv_HReg
.
Sebastien Haneuse and Kyu Ha Lee
Maintainer: Kyu Ha Lee <klee15239@gmail.com>
Lee, K. H., Haneuse, S., Schrag, D., and Dominici, F. (2015),
Bayesian semiparametric analysis of semicompeting risks data:
investigating hospital readmission after a pancreatic cancer diagnosis, Journal of the Royal Statistical Society: Series C, 64, 2, 253-273.
Lee, K. H., Dominici, F., Schrag, D., and Haneuse, S. (2016),
Hierarchical models for semicompeting risks data with application to quality of end-of-life care for pancreatic cancer, Journal of the American Statistical Association, 111, 515, 1075-1095.
Alvares, D., Haneuse, S., Lee, C., Lee, K. H. (2019),
SemiCompRisks: An R package for the analysis of independent and cluster-correlated semi-competing risks data, The R Journal, 11, 1, 376-400.
1 | ## See Examples in \code{\link{BayesID_HReg}} and \code{\link{BayesSurv_HReg}}.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.