gt.bpm: Gradient test

Description Usage Arguments Details Value WARNINGS Author(s) References See Also Examples

Description

gt.bpm can be used to test the hypothesis of absence of endogeneity, correlated model equations/errors or non-random sample selection in binary bivariate probit models.

Usage

1
gt.bpm(x)

Arguments

x

A fitted SemiParBIVProbit object as produced by SemiParBIVProbit().

Details

The gradient test was first proposed by Terrell (2002) and it is based on classic likelihood theory. See Marra et al. (in press) for full details.

Value

It returns a numeric p-value corresponding to the null hypothesis that the correlation, θ, is equal to 0.

WARNINGS

This test's implementation is only valid for bivariate binary probit models with normal errors.

Author(s)

Maintainer: Giampiero Marra giampiero.marra@ucl.ac.uk

References

Marra G., Radice R. and Filippou P. (in press), Regression Spline Bivariate Probit Models: A Practical Approach to Testing for Exogeneity. Communications in Statistics - Simulation and Computation.

Terrell G. (2002), The Gradient Statistic. Computing Science and Statistics, 34, 206-215.

See Also

SemiParBIVProbit

Examples

1
## see examples for SemiParBIVProbit


Search within the SemiParBIVProbit package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.