| asnr_confint | R Documentation | 
Computes approximate bounds on the achieved signal-noise ratio of the Markowitz portfolio built on sample data.
asnr_confint(z.s, level = 0.95, level.lo = (1 - level), level.hi = 1)
## S3 method for class 'sropt'
asnr_confint(z.s, level = 0.95, level.lo = (1 - level), level.hi = 1)
## S3 method for class 'del_sropt'
asnr_confint(z.s, level = 0.95, level.lo = (1 - level), level.hi = 1)
| z.s | an object of type  | 
| level | the confidence level required. | 
| level.lo | the lower confidence level required. | 
| level.hi | the upper confidence level required. | 
Provides an approximate bound on the achieved Signal-noise ratio of the
sample Markowitz portfolio. That is if \mu and \Sigma
are the unknown mean and covariance of returns, and w is the 
sample Markowitz portfolio, then the probability that 
w^{\top}\mu / \sqrt{w^{\top}\Sigma w} \ge b
is the given probability level.
See section 8.3.1 of ‘The Sharpe Ratio: Statistics and Applications’.
Plugs in the \delta_2 estimator.
an estimate of the non-centrality parameter, which is the maximal population Sharpe ratio.
Steven E. Pav shabbychef@gmail.com
Pav, S. E. "The Sharpe Ratio: Statistics and Applications." CRC Press, 2021.
Pav, S. E. "Inference on achieved signal noise ratio." 2020 https://arxiv.org/abs/2005.06171
Other sropt Hotelling: 
inference(),
sric()
# generate some sropts
nfac <- 3
nyr <- 5
ope <- 253
# simulations with no covariance structure.
# under the null:
set.seed(as.integer(charToRaw("determinstic")))
Returns <- matrix(rnorm(ope*nyr*nfac,mean=0,sd=0.0125),ncol=nfac)
asro <- as.sropt(Returns,drag=0,ope=ope)
asnr_confint(asro)
# for del_sropt:
nfac <- 5
nyr <- 10
ope <- 253
set.seed(as.integer(charToRaw("fix seed")))
Returns <- matrix(rnorm(ope*nyr*nfac,mean=0.0005,sd=0.0125),ncol=nfac)
# hedge out the first one:
G <- matrix(diag(nfac)[1,],nrow=1)
asro <- as.del_sropt(Returns,G,drag=0,ope=ope)
asnr_confint(asro)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.