inference | R Documentation |
Estimates the non-centrality parameter associated with an observed statistic following an optimal Sharpe Ratio distribution.
inference(z.s, type = c("KRS", "MLE", "unbiased"))
## S3 method for class 'sropt'
inference(z.s, type = c("KRS", "MLE", "unbiased"))
## S3 method for class 'del_sropt'
inference(z.s, type = c("KRS", "MLE", "unbiased"))
z.s |
an object of type |
type |
the estimator type. one of |
Let F
be an observed statistic distributed as a non-central F with
\nu_1
, \nu_2
degrees of freedom and non-centrality
parameter \delta^2
. Three methods are presented to
estimate the non-centrality parameter from the statistic:
an unbiased estimator, which, unfortunately, may be negative.
This is \delta_0
of Equations (6.67) and (6.68) of ‘The Sharpe Ratio: Statistics and Applications’.
the Maximum Likelihood Estimator, which may be zero, but not negative.
the estimator of Kubokawa, Roberts, and Shaleh (KRS), which
is a shrinkage estimator.
This is \delta_2
of Equations (6.67) and (6.68) of ‘The Sharpe Ratio: Statistics and Applications’.
The sropt distribution is equivalent to an F distribution up to a square root and some rescalings.
The non-centrality parameter of the sropt distribution is
the square root of that of the Hotelling, i.e. has
units 'per square root time'. As such, the 'unbiased'
type can be problematic!
an estimate of the non-centrality parameter, which is the maximal population Sharpe ratio.
Steven E. Pav shabbychef@gmail.com
Pav, S. E. "The Sharpe Ratio: Statistics and Applications." CRC Press, 2021.
Kubokawa, T., C. P. Robert, and A. K. Saleh. "Estimation of noncentrality parameters." Canadian Journal of Statistics 21, no. 1 (1993): 45-57. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/3315657")}
Spruill, M. C. "Computation of the maximum likelihood estimate of a noncentrality parameter." Journal of multivariate analysis 18, no. 2 (1986): 216-224. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/0047-259X(86)90070-9")}
F-distribution functions, df
.
Other sropt Hotelling:
asnr_confint()
,
sric()
# generate some sropts
nfac <- 3
nyr <- 5
ope <- 253
# simulations with no covariance structure.
# under the null:
set.seed(as.integer(charToRaw("determinstic")))
Returns <- matrix(rnorm(ope*nyr*nfac,mean=0,sd=0.0125),ncol=nfac)
asro <- as.sropt(Returns,drag=0,ope=ope)
est1 <- inference(asro,type='unbiased')
est2 <- inference(asro,type='KRS')
est3 <- inference(asro,type='MLE')
# under the alternative:
Returns <- matrix(rnorm(ope*nyr*nfac,mean=0.0005,sd=0.0125),ncol=nfac)
asro <- as.sropt(Returns,drag=0,ope=ope)
est1 <- inference(asro,type='unbiased')
est2 <- inference(asro,type='KRS')
est3 <- inference(asro,type='MLE')
# sample many under the alternative, look at the estimator.
df1 <- 3
df2 <- 512
ope <- 253
zeta.s <- 1.25
rvs <- rsropt(128, df1, df2, zeta.s, ope)
roll.own <- sropt(z.s=rvs,df1,df2,drag=0,ope=ope)
est1 <- inference(roll.own,type='unbiased')
est2 <- inference(roll.own,type='KRS')
est3 <- inference(roll.own,type='MLE')
# for del_sropt:
nfac <- 5
nyr <- 10
ope <- 253
set.seed(as.integer(charToRaw("fix seed")))
Returns <- matrix(rnorm(ope*nyr*nfac,mean=0.0005,sd=0.0125),ncol=nfac)
# hedge out the first one:
G <- matrix(diag(nfac)[1,],nrow=1)
asro <- as.del_sropt(Returns,G,drag=0,ope=ope)
est1 <- inference(asro,type='unbiased')
est2 <- inference(asro,type='KRS')
est3 <- inference(asro,type='MLE')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.