sie.predict | R Documentation |
predict.nts() predicts the time series data basis on the estimation.
sie.predict(ts, esti.li, h)
ts |
The data set which is a time series data typically |
esti.li |
The output from fix.fit() or sie.auto.fit() function |
h |
h indicates the number of forecasting points |
A vector which contains h forecasting points
set.seed(137) time.series = c() n = 1024 v = 25 w = rnorm(n, 0, 1) / v x_ini = runif(1,0,1) for(i in 1:n){ if(i == 1){ time.series[i] = 0.2 + 0.6*cos(2*pi*(i/n))*x_ini + w[i] # } else{ time.series[i] = 0.2 + 0.6*cos(2*pi*(i/n))*time.series[i-1] + w[i] } } res1.2 = fix.fit(time.series, 5, 1, "Legen") sie.predict(time.series, res1.2, 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.