| sie.predict | R Documentation |
predict.nts() predicts the time series data basis on the estimation.
sie.predict(ts, esti.li, h)
ts |
The data set which is a time series data typically |
esti.li |
The output from fix.fit() or sie.auto.fit() function |
h |
h indicates the number of forecasting points |
A vector which contains h forecasting points
set.seed(137)
time.series = c()
n = 1024
v = 25
w = rnorm(n, 0, 1) / v
x_ini = runif(1,0,1)
for(i in 1:n){
if(i == 1){
time.series[i] = 0.2 + 0.6*cos(2*pi*(i/n))*x_ini + w[i] #
} else{
time.series[i] = 0.2 + 0.6*cos(2*pi*(i/n))*time.series[i-1] + w[i]
}
}
res1.2 = fix.fit(time.series, 5, 1, "Legen")
sie.predict(time.series, res1.2, 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.