library(SimDesign) library(SimNPH) library(parallel) cl <- makeCluster(8) clusterEvalQ(cl, { library(SimDesign) library(SimNPH) library(parallel) })
This is a simple example on how to run a simulation of analyses of datasets with a delayed treatment effect using the max-combo and the log-rank test. The
Setting up the simulations to be run. createDesign
creates a tibble
with
every combination of the parameters. Each line corresponds to one simulation to
be run.
The function generate_delayed_effect
needs the columns: n_trt
: number of
patients in the treatment arm, n_ctrl
: number of patients in the control arm,
delay
: delay until onset of treatment effect, hazard_ctrl
: hazard under
control and before onset of treatment effect, hazart_trt
: hazard under
treatment, t_max
: maximum time of observation.
An example design tibble
with all parameters filled out can be created with
desing_skeleton_delayed_effect
. Use the function to output an example function
call that you can copy and modify as needed, or assign the result to a variable
to obtain a design tibble
with some default parameters.
By default this will create a simulation design skeleton for simulations of 50 patients in each arm, a constant hazard of 0.2 under control and a hazard of 0.02 under treatment after the effect onset varying from 0 to 10.
N_sim <- 100 Assumptions <- assumptions_delayed_effect() #> expand.grid( #> delay=m2d(seq(0, 10, by=2)), # delay of 0, 1, ..., 10 months #> hazard_ctrl=m2r(24), # median survival control of 24 months #> hazard_trt=m2r(36), # median survival treatment of 36 months #> random_withdrawal=m2r(120) # median time to random withdrawal 10 years #> ) Options <- design_fixed_followup() #> expand.grid( #> n_trt=150, # 150 patients in the treatment arm #> n_ctrl=150, # 150 patients in the control arm #> followup=m2d(24), # followup 2 years #> recruitment=m2d(6) # recruitment time 6 months #> #> ) Design <- merge(Assumptions, Options, by=NULL) knitr::kable(Design)
| delay| hazard_ctrl| hazard_trt| random_withdrawal| n_trt| n_ctrl| followup| recruitment| |-------:|-----------:|----------:|-----------------:|-----:|------:|--------:|-----------:| | 0.000| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| | 60.875| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| | 121.750| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| | 182.625| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| | 243.500| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| | 304.375| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625|
Define the data generating 'generate' function, that beside simulating the time to event also applies the different censoring processes.
my_generator <- function(condition, fixed_objects=NULL){ generate_delayed_effect(condition, fixed_objects) |> recruitment_uniform(condition$recruitment) |> random_censoring_exp(condition$random_withdrawal) |> admin_censoring_time(condition$followup) }
Next, we need to specify a summary function that computes the desired operating characteristics for each simulation scenario, and each analysis method. In the example below, we use a summary function that computes the power (as we consider scenarios under the alternative in the example) of the log-rank test and the max-combo test across simulated scenarios. For each scenario the function just averages the number of times the computed p-value is below the significance level obtain the power.
The results object contains the results of all replications of the corresponding
method for each row of the Design
object. In this example results$p
contains
all N_sim
p-values returned by the analyse_maxcombo
or analyse_logrank
functions respectively. The Summary will contain columns with the rejection rate
and some other summary statistics for both methods.
alpha <- 0.05 Summarise <- create_summarise_function( maxcombo = summarise_test(alpha), logrank = summarise_test(alpha) )
Now we put it all together: in Design we give the scenarios defined before. We
want to run 100 replications for each scenario. We want to generate data using
the generate_delayed_effect
function using the parameters from Design
and
analyse each replication of each scenario with the two functions
analyse_logrank
and analyse_maxcombo
. The output should be summarised with
the Summarise
function defined before and the simulations should be run in
parallel.
res <- runSimulation( Design, replications = N_sim, generate = my_generator, analyse = list( logrank = analyse_logrank(), maxcombo = analyse_maxcombo() ), summarise = Summarise, cl = cl, save=FALSE ) #> #> Number of parallel clusters in use: 8 #> #> Simulation complete. Total execution time: 14.28s
Finally we select the interesting columns from the output. Since all other parameters are the same for each scenario we just select delay. And we are interested in the rejection rate of the tests.
res |> subset(select=c("delay", "maxcombo.rejection_0.05", "logrank.rejection_0.05")) |> knitr::kable()
| delay| maxcombo.rejection_0.05| logrank.rejection_0.05| |-------:|-----------------------:|----------------------:| | 0.000| 0.47| 0.50| | 60.875| 0.45| 0.46| | 121.750| 0.37| 0.32| | 182.625| 0.27| 0.23| | 243.500| 0.20| 0.14| | 304.375| 0.16| 0.12|
In this scenario we extend the scenario from above to include a fixed followup as well as an interim analysis after a fixed number of events. For this we will define additional analyse functions.
First we extend the Design to include a column with the number of events after which an interim analysis should be done.
Options <- design_group_sequential() #> expand.grid( #> n_trt=200, # 200 patients in the treatment arm #> n_ctrl=200, # 200 patients in the control arm #> followup=m2d(48), # maximum followup time 4 years #> recruitment=m2d(6), # recruitment time 6 months #> interim_events=150, # interim analysis after 150 events #> final_events=300 # final analysis after 300 events #> ) Design <- merge(Assumptions, Options, by=NULL) knitr::kable(Design)
| delay| hazard_ctrl| hazard_trt| random_withdrawal| n_trt| n_ctrl| followup| recruitment| interim_events| final_events| |-------:|-----------:|----------:|-----------------:|-----:|------:|--------:|-----------:|--------------:|------------:| | 0.000| 0.0009489| 0.0006326| 0.0001898| 200| 200| 1461| 182.625| 150| 300| | 60.875| 0.0009489| 0.0006326| 0.0001898| 200| 200| 1461| 182.625| 150| 300| | 121.750| 0.0009489| 0.0006326| 0.0001898| 200| 200| 1461| 182.625| 150| 300| | 182.625| 0.0009489| 0.0006326| 0.0001898| 200| 200| 1461| 182.625| 150| 300| | 243.500| 0.0009489| 0.0006326| 0.0001898| 200| 200| 1461| 182.625| 150| 300| | 304.375| 0.0009489| 0.0006326| 0.0001898| 200| 200| 1461| 182.625| 150| 300|
The analyse_group_sequential
function allows to combine two or more analyse
functions to create an analysis function corresponding to a group sequential
design. The arguments are the times or events after which the analyses are done,
the nominal alpha at each stage and the analyse functions to be used at each
stage.
## O'Brien-Fleming Bounds for GSD with interim analysis at information time 1/2 nominal_alpha <- ldbounds::ldBounds(c(0.5,1))$nom.alpha clusterExport(cl, "nominal_alpha") Analyse <- list( logrank_seq = analyse_group_sequential( followup = c(condition$interim_events, condition$final_events), followup_type = c("event", "event"), alpha = nominal_alpha, analyse_functions = analyse_logrank() ), maxcombo_seq = analyse_group_sequential( followup = c(condition$interim_events, condition$final_events), followup_type = c("event", "event"), alpha = nominal_alpha, analyse_functions = analyse_maxcombo() ) )
The output of the function created with analyse_group_sequential
contains
additional columns. rejected_at_stage
includes the stage at which the null was
first rejected or Inf
if the null was not rejected, N_pat
and N_evt
contain the number of patients recruited and the number of events observed
before the null was rejected and followup
contains the time after study start
at which the last analysis was done.
The results object also includes the results returned by each stage in
results_stages
, but here we only use the overall test-decision.
Summarise <- create_summarise_function( maxcombo_seq = summarise_group_sequential(), logrank_seq = summarise_group_sequential() )
The call to runSimulation
looks almost the same as above but now the
additional columns we defined in our Summarise
functions are included in the
result.
res <- runSimulation( Design, replications = N_sim, generate = my_generator, analyse = Analyse, summarise = Summarise, cl = cl, save=FALSE ) #> #> Number of parallel clusters in use: 8 #> #> Simulation complete. Total execution time: 30.07s
In the case of a group sequential design we are also interested in the average running time of the study in terms of patients recruited, number of events and running time of the study.
res |> subset(select=c( "delay", "maxcombo_seq.rejection", "logrank_seq.rejection", "maxcombo_seq.n_pat", "logrank_seq.n_pat", "maxcombo_seq.n_evt", "logrank_seq.n_evt", "maxcombo_seq.followup", "logrank_seq.followup" )) |> knitr::kable()
| delay| maxcombo_seq.rejection| logrank_seq.rejection| maxcombo_seq.n_pat| logrank_seq.n_pat| maxcombo_seq.n_evt| logrank_seq.n_evt| maxcombo_seq.followup| logrank_seq.followup| |-------:|----------------------:|---------------------:|------------------:|-----------------:|------------------:|-----------------:|---------------------:|--------------------:| | 0.000| 0.82| 0.84| 400| 400| 213.73| 212.11| 1271.03| 1256.83| | 60.875| 0.77| 0.76| 400| 400| 215.33| 218.62| 1280.30| 1308.13| | 121.750| 0.73| 0.70| 400| 400| 228.36| 231.12| 1362.40| 1385.58| | 182.625| 0.71| 0.65| 400| 400| 223.63| 228.97| 1320.08| 1368.20| | 243.500| 0.55| 0.49| 400| 400| 238.05| 239.26| 1426.16| 1436.63| | 304.375| 0.58| 0.50| 400| 400| 237.93| 241.80| 1411.85| 1442.90|
To evaluate the performance of an estimator, we first compute the values of some true summary statistics to which the estimates will be compared. The most relevant true summary statistics can be computed by a convenience function for each scenario. Just pipe the Design data.frame to the function and the values of the statistics are added as columns.
Options <- design_fixed_followup() #> expand.grid( #> n_trt=150, # 150 patients in the treatment arm #> n_ctrl=150, # 150 patients in the control arm #> followup=m2d(24), # followup 2 years #> recruitment=m2d(6) # recruitment time 6 months #> #> ) Design <- merge(Assumptions, Options, by=NULL) Design <- Design |> true_summary_statistics_delayed_effect(cutoff_stats = 20) knitr::kable(Design)
| delay| hazard_ctrl| hazard_trt| random_withdrawal| n_trt| n_ctrl| followup| recruitment| median_survival_trt| median_survival_ctrl| rmst_trt_20| rmst_ctrl_20| gAHR_20| AHR_20| AHRoc_20| AHRoc_robust_20| |-------:|-----------:|----------:|-----------------:|-----:|------:|--------:|-----------:|-------------------:|--------------------:|-----------:|------------:|---------:|---------:|---------:|---------------:| | 0.000| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| 1095.7500| 730.5| 19.87402| 19.81142| 0.6666667| 0.6666667| 0.6666667| 0.6666667| | 60.875| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| 1065.3125| 730.5| 19.81142| 19.81142| 1.0000000| 1.0000000| 1.0000000| 1.0000000| | 121.750| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| 1034.8750| 730.5| 19.81142| 19.81142| 1.0000000| 1.0000000| 1.0000000| 1.0000000| | 182.625| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| 1004.4375| 730.5| 19.81142| 19.81142| 1.0000000| 1.0000000| 1.0000000| 1.0000000| | 243.500| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| 974.0000| 730.5| 19.81142| 19.81142| 1.0000000| 1.0000000| 1.0000000| 1.0000000| | 304.375| 0.0009489| 0.0006326| 0.0001898| 150| 150| 730.5| 182.625| 943.5625| 730.5| 19.81142| 19.81142| 1.0000000| 1.0000000| 1.0000000| 1.0000000|
Summarise
functionIn the Summarise function the true value against which the estimator should be compared has to be specified. If coverage and average width of the confidence intervals should be estimated, the CI bounds should also be specified.
The arguments to the functions are left un-evaluated and are later evaluated in
the results
and condition
datasets respectively. So any expressions using
variables from results can be used for the estimated value and the CI bounds and
expressions using variables from condition can be used in the argument for the
real value.
In this case we want to compare the hazard ratio estimated by the Cox model to the geometric average hazard ratio as well as to the hazard ratio after onset of treatment, calculated from the two respective columns of the Design data.frame.
Note that one name can be used twice to summarise the output of one analysis method two times, like in this case, comparing it to two different summary statistics.
Summarise <- create_summarise_function( coxph=summarise_estimator(hr, gAHR_20, hr_lower, hr_upper, name="gAHR"), coxph=summarise_estimator(hr, hazard_trt/hazard_ctrl, hr_lower, hr_upper, name="HR") )
Analyse <- list( coxph = analyse_coxph() ) res <- runSimulation( Design, replications = N_sim, generate = my_generator, analyse = Analyse, summarise = Summarise, cl = cl, save=FALSE ) #> #> Number of parallel clusters in use: 8 #> #> Simulation complete. Total execution time: 0.93s
res |> subset(select=c( "delay", "coxph.HR.bias", "coxph.gAHR.bias", "coxph.HR.mse", "coxph.gAHR.mse", "coxph.HR.coverage", "coxph.gAHR.coverage" )) |> knitr::kable()
| delay| coxph.HR.bias| coxph.gAHR.bias| coxph.HR.mse| coxph.gAHR.mse| coxph.HR.coverage| coxph.gAHR.coverage| |-------:|-------------:|---------------:|------------:|--------------:|-----------------:|-------------------:| | 0.000| 0.0307004| 0.0307004| 0.0171681| 0.0171681| 0.97| 0.97| | 60.875| 0.0437173| -0.2896160| 0.0213150| 0.1032812| 0.94| 0.55| | 121.750| 0.0715696| -0.2617637| 0.0222560| 0.0856541| 0.91| 0.63| | 182.625| 0.1197364| -0.2135969| 0.0353176| 0.0666045| 0.87| 0.72| | 243.500| 0.1591968| -0.1741365| 0.0495382| 0.0545181| 0.81| 0.78| | 304.375| 0.1861441| -0.1471892| 0.0633401| 0.0503551| 0.73| 0.84|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.