Nothing
#' Calculates consumption features from weekly consumption only
#'
#' @param B
#' a vector of any length with measurements
#' @param rowname
#' the row name of the resulting feature vector
#' @return a data.frame with the calculated features as columns and a specified
#' rowname, if given
#' @author Konstantin Hopf \email{konstantin.hopf@uni-bamberg.de}
#' @references Hopf, K. (2019). Predictive Analytics for Energy Efficiency and
#' Energy Retailing (1st ed.). Bamberg: University of Bamberg.
#' \url{https://doi.org/10.20378/irbo-54833}
#' @references Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014).
#' Feature extraction and filtering for household classification based on
#' smart electricity meter data. Computer Science-Research and Development,
#' (31) 3, 141–148. \url{https://doi.org/10.1007/s00450-014-0294-4}
#' @references Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy
#' efficiency in the residential sector with smart meter data analytics.
#' Electronic Markets, 28(4). \url{https://doi.org/10.1007/s12525-018-0290-9}
#' @export
calc_featuresco_consumption <- function(B, rowname=NULL){
B <- as.numeric(B)
#day matrix with 7 cols
# initialization of the dataframe
# valuex weekend/weekday
D=data.frame(consumption=mean(B, na.rm=TRUE))
if(!is.null(rowname))
row.names(D) <- rowname
#
# daytime consumption and relations
#
return(D)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.