Description Usage Arguments Details Value Note See Also Examples
Return a new SparkDataFrame by adding a column or replacing the existing column that has the same name.
1 2 3 4 | withColumn(x, colName, col)
## S4 method for signature 'SparkDataFrame,character'
withColumn(x, colName, col)
|
x |
a SparkDataFrame. |
colName |
a column name. |
col |
a Column expression (which must refer only to this SparkDataFrame), or an atomic vector in the length of 1 as literal value. |
Note: This method introduces a projection internally. Therefore, calling it multiple times,
for instance, via loops in order to add multiple columns can generate big plans which
can cause performance issues and even StackOverflowException
. To avoid this,
use select
with the multiple columns at once.
A SparkDataFrame with the new column added or the existing column replaced.
withColumn since 1.4.0
rename mutate subset
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
checkpoint()
,
coalesce()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapplyCollect()
,
dapply()
,
describe()
,
dim()
,
distinct()
,
dropDuplicates()
,
dropna()
,
drop()
,
dtypes()
,
exceptAll()
,
except()
,
explain()
,
filter()
,
first()
,
gapplyCollect()
,
gapply()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersectAll()
,
intersect()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartitionByRange()
,
repartition()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
selectExpr()
,
select()
,
showDF()
,
show()
,
storageLevel()
,
str()
,
subset()
,
summary()
,
take()
,
toJSON()
,
unionAll()
,
unionByName()
,
union()
,
unpersist()
,
withWatermark()
,
with()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Not run:
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
newDF <- withColumn(df, "newCol", df$col1 * 5)
# Replace an existing column
newDF2 <- withColumn(newDF, "newCol", newDF$col1)
newDF3 <- withColumn(newDF, "newCol", 42)
# Use extract operator to set an existing or new column
df[["age"]] <- 23
df[[2]] <- df$col1
df[[2]] <- NULL # drop column
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.