Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", dpi = 300, tidy = "styler" )
Represent how to use SpatPCA for two-dimensional data for capturing the most dominant spatial pattern
library(SpatPCA) library(ggplot2) library(dplyr) library(tidyr) library(gifski) library(fields) library(scico) base_theme <- theme_minimal(base_size = 10, base_family = "Times") + theme(legend.position = "bottom") fill_bar <- guides(fill = guide_colourbar( barwidth = 10, barheight = 0.5, label.position = "bottom") ) coltab <- scico(128, palette = 'vik') color_scale_limit <- c(-.8, .8)
set.seed(1024) p <- 25 n <- 8 location <- matrix(rep(seq(-5, 5, length = p), 2), nrow = p, ncol = 2) expanded_location <- expand.grid(location[, 1], location[, 2]) unnormalized_eigen_fn <- as.vector(exp(-location[, 1] ^ 2) %*% t(exp(-location[, 2] ^ 2))) true_eigen_fn <- unnormalized_eigen_fn / norm(t(unnormalized_eigen_fn), "F") data.frame( location_dim1 = expanded_location[, 1], location_dim2 = expanded_location[, 2], eigenfunction = true_eigen_fn ) %>% ggplot(aes(location_dim1, location_dim2)) + geom_tile(aes(fill = eigenfunction)) + scale_fill_gradientn(colours = coltab, limits = color_scale_limit) + base_theme + labs(title = "True Eigenfunction", fill = "") + fill_bar
realizations <- rnorm(n = n, sd = 3) %*% t(true_eigen_fn) + matrix(rnorm(n = n * p^2), n, p^2)
original_par <- par() for (i in 1:n) { par(mar = c(3, 3, 1, 1), family = "Times") image.plot( matrix(realizations[i, ], p, p), main = paste0(i, "-th realization"), zlim = c(-10, 10), col = coltab, horizontal = TRUE, cex.main = 0.8, cex.axis = 0.5, axis.args=list(cex.axis=0.5), legend.width=0.5 ) } par(original_par)
SpatPCA::spatpca
We add a candidate set of tau2
to see how SpatPCA obtain a localized smooth pattern.
tau2 <- c(0, exp(seq(log(10), log(400), length = 10))) cv <- spatpca(x = expanded_location, Y = realizations, tau2 = tau2) eigen_est <- cv$eigenfn
The following figure shows that SpatPCA can find sparser pattern than PCA, which is close to the true pattern.
data.frame( location_dim1 = expanded_location[, 1], location_dim2 = expanded_location[, 2], spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1]) %>% gather(estimate, eigenfunction, -c(location_dim1, location_dim2)) %>% ggplot(aes(location_dim1, location_dim2)) + geom_tile(aes(fill=eigenfunction)) + scale_fill_gradientn(colours = coltab, limits = color_scale_limit) + base_theme + facet_wrap(.~estimate) + labs(fill = "") + fill_bar
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.