View source: R/conditionalSim.R
| condrgp | R Documentation | 
This function generates conditional simulation of Gaussian random fields from the simple kriging predictor.
condrgp(n, coord, data.coord, data, cov.mod = "powexp", mean = 0, sill = 1, range = 1, smooth = 1, grid = FALSE, control = list())
| n | Integer. The number of conditional simulations. | 
| coord | A numeric vector or matrix specifying the coordinates
where the process has to be generated. If  | 
| data.coord | A numeric vector or matrix specifying the coordinates where the process is conditioned. | 
| data | A numeric vector giving the conditioning observations. | 
| cov.mod | A character string specifying the covariance function family. Must be one of "whitmat", "powexp", "cauchy" or "bessel" for the Whittle-Mater, the powered exponential, the Cauchy or Bessel covariance families. | 
| mean,sill,range,smooth | The mean, sill, range and smooth of the Gaussian process. | 
| grid | Logical. Does  | 
| control | A named list passing options to the simulation method
of Gaussian processes — see  | 
A list with components:
| coord | The coordinates at which the process was simulated; | 
| cond.sim | The simulated process; | 
| data.coord | The coordinates of the conditioning locations; | 
| data | The conditioning observations; | 
| cov.mod | The covariance function family; | 
| grid | Does  | 
Mathieu Ribatet
kriging, rgp.
## Several conditional simulations
n.site <- 50
n.sim <- 512
x.obs <- runif(n.site, -100, 100)
x.sim <- seq(-100, 100, length = n.sim)
data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)
sim <- condrgp(5, x.sim, x.obs, data, "whitmat", sill = 1, range =
10, smooth = 0.75)
matplot(x.sim, t(sim$cond.sim),  type = "l", lty = 1, xlab = "x", ylab =
expression(Y[cond](x)))
points(x.obs, data, pch = 21, bg = 1)
title("Five conditional simulations")
## Comparison between one conditional simulations and the kriging
## predictor on a grid
x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2)
x <- y <- seq(-100, 100, length = 100)
x.sim <- cbind(x, y)
data <- rgp(1, x.obs, "whitmat", sill = 1, range = 50, smooth = 0.75)
krig <- kriging(data, x.obs, x.sim, "whitmat", sill = 1, range = 50,
smooth = 0.75, grid = TRUE)
sim <- condrgp(1, x.sim, x.obs, data, "whitmat", sill = 1, range = 50,
smooth = 0.75, grid = TRUE)
z.lim <- range(c(sim$cond.sim, data, krig$krig.est))
breaks <- seq(z.lim[1], z.lim[2], length = 65)
col <- heat.colors(64)
idx <- as.numeric(cut(data, breaks))
op <- par(mfrow = c(1,2))
image(x, y, krig$krig.est, col = col, breaks = breaks)
points(x.obs, bg = col[idx], pch = 21)
title("Kriging predictor")
image(x, y, sim$cond.sim, col = col, breaks = breaks)
points(x.obs, bg = col[idx], pch = 21)
title("Conditional simulation")
## Note how the background colors of the above points matches the ones
## returned by the image function
par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.