kriging | R Documentation |
This function interpolates a zero mean Gaussian random field using the simple kriging predictor.
kriging(data, data.coord, krig.coord, cov.mod = "whitmat", sill, range, smooth, smooth2 = NULL, grid = FALSE, only.weights = FALSE)
data |
A numeric vector or matrix. If |
data.coord |
A numeric vector or matrix specifying the
coordinates of the observed data. If |
krig.coord |
A numeric vector or matrix specifying the
coordinates where the kriging predictor has to be computed. If
|
cov.mod |
A character string specifying the covariance function family. Must be one of "whitmat", "powexp", "cauchy", "bessel" or "caugen" for the Whittle-Matern, the powered exponential, the Cauchy, the Bessel or the generalized Cauchy covariance families. |
sill,range,smooth,smooth2 |
Numerics specifiying the sill, range, smooth and, if any, the second smooth parameters of the covariance function. |
grid |
Logical. Does |
only.weights |
Logical. Should only the kriging weights be
computed? If |
A list with components
coord |
The coordinates where the kriging predictor has been computed; |
krig.est |
The kriging predictor estimates; |
grid |
Does |
weights |
A matrix giving the kriging weights: each column corresponds to one prediction location. |
Mathieu Ribatet
Chiles, J.-P. and Delfiner, P. (1999) Geostatistics, Modeling Spatial Uncertainty Wiley Series in Probability and Statistics.
condrgp
, rgp
, covariance
.
## Kriging from a single realisation n.site <- 50 n.pred <- 512 x.obs <- runif(n.site, -100, 100) x.pred <- seq(-100, 100, length = n.pred) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75) plot(krig$coord, krig$krig.est, type = "l", xlab = "x", ylab = expression(hat(Y)(x))) points(x.obs, data, col = 2, pch = 21, bg = 2) ## Kriging from several realisations n.real <- 3 data <- rgp(n.real, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75) matplot(krig$coord, t(krig$krig.est), type = "l", xlab = "x", ylab = expression(hat(Y)(x)), lty = 1) matpoints(x.obs, t(data), pch = 21, col = 1:n.real, bg = 1:n.real) title("Three kriging predictors in one shot") ## Two dimensional kriging on a grid x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2) x <- y <- seq(-100, 100, length = 100) x.pred <- cbind(x, y) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75, grid = TRUE) z.lim <- range(c(data, krig$krig.est)) breaks <- seq(z.lim[1], z.lim[2], length = 65) col <- heat.colors(64) idx <- as.numeric(cut(data, breaks)) image(x, y, krig$krig.est, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) ## Note how the background colors of the above points matches the ones ## returned by the image function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.