Estimation.PL.MLE: Performs parameter estimation for the Plackett-Luce model...

Description Usage Arguments Value Examples

View source: R/RandomUtilityModels.R

Description

Performs parameter estimation for the Plackett-Luce model using an Minorize Maximize algorithm

Usage

1
Estimation.PL.MLE(Data, iter = 10)

Arguments

Data

data in either partial or full rankings (Partial rank case works for settings like car racing)

iter

number of MM iterations to run

Value

list of estimated means (Gamma) and the log likelihoods

Examples

1
2

Example output

[1] "Finished 1/10"
[1] "Finished 2/10"
[1] "Finished 3/10"
[1] "Finished 4/10"
[1] "Finished 5/10"
[1] "Finished 6/10"
[1] "Finished 7/10"
[1] "Finished 8/10"
[1] "Finished 9/10"
[1] "Finished 10/10"
$m
[1] 5

$order
[1] 1 2 3 4 5

$Mean
[1] 0.09125506 0.14783081 0.20515827 0.23404831 0.32170757

$SD
[1] 0.09125506 0.14783081 0.20515827 0.23404831 0.32170757

$LL
         [,1]      [,2]      [,3]     [,4]      [,5]      [,6]      [,7]
[1,] -22.6349 -22.55422 -22.54277 -22.5405 -22.53989 -22.53968 -22.53958
          [,8]      [,9]     [,10]
[1,] -22.53952 -22.53948 -22.53945

$Time
   user  system elapsed 
  0.010   0.000   0.012 

$AverageLogLikelihood
         [,1]
[1,] -4.50789

$Parameters
$Parameters[[1]]
$Parameters[[1]]$Mean
[1] 0.09125506


$Parameters[[2]]
$Parameters[[2]]$Mean
[1] 0.1478308


$Parameters[[3]]
$Parameters[[3]]$Mean
[1] 0.2051583


$Parameters[[4]]
$Parameters[[4]]$Mean
[1] 0.2340483


$Parameters[[5]]
$Parameters[[5]]$Mean
[1] 0.3217076

StatRank documentation built on May 1, 2019, 8:22 p.m.