Description Usage Arguments Examples
View source: R/Nonparametric.R
Given rank data (full, top partial, or sub partial), this function returns an inference object that fits nonparametric latent utilties on the rank data.
1 2 | Estimation.RUM.Nonparametric(Data, m, iter = 10, bw = 0.025,
utilities.per.agent = 20, race = FALSE)
|
Data |
full, top partial, or sub partial rank data |
m |
number of alternatives |
iter |
number of EM iterations to run |
bw |
bandwidth, or smoothing parameter for KDE |
utilities.per.agent |
Number of utility vector samples that we get per agent. More generally gives a more accurate estimate |
race |
TRUE if data is sub partial, FALSE (default) if not |
1 2 | data(Data.Test)
Estimation.RUM.Nonparametric(Data.Test, m = 5, iter = 3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.