rPGamma | R Documentation |
Simulates from p-gamma distributions. These are p-RDTS distributions with alpha=0.
rPGamma(n, t, mu, p, step = 1)
n |
Number of observations. |
t |
Parameter >0. |
mu |
Parameter >0. |
p |
Parameter >1. |
step |
Tuning parameter. The larger the step, the slower the rejection sampling, but the fewer the number of terms. See Hoefert (2011) or Section 4 in Grabchak (2019). |
Uses Theorem 1 in Grabchak (2021) to simulate from a p-Gamma distribution. This distribution has Laplace transform
L(z) = exp( t int_0^infty (e^(-xz)-1)e^(-(mu*x)^p) x^(-1) dx ), z>0
and Levy measure
M(dx) = t e^(-(mu*x)^p) x^(-1) 1(x>0)dx.
Returns a vector of n random numbers.
Michael Grabchak and Lijuan Cao
M. Grabchak (2019). Rejection sampling for tempered Levy processes. Statistics and Computing, 29(3):549-558
M. Grabchak (2021). An exact method for simulating rapidly decreasing tempered stable distributions. Statistics and Probability Letters, 170: Article 109015.
M. Hofert (2011). Sampling exponentially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 22(1), 3.
rPGamma(20, 2, 2, 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.