rTrunTS | R Documentation |
Simulates from the truncated tempered stable distribution.
rTrunTS(n, t, mu, alpha, b = 1, step = 1)
n |
Number of observations. |
t |
Parameter > 0. |
mu |
Parameter > 0. |
alpha |
Parameter in the open interval (0,1). |
b |
Parameter > 0. |
step |
Tuning parameter. The larger the step, the slower the rejection sampling, but the fewer the number of terms. See Hoefert (2011) or Section 4 in Grabchak (2019). |
Simulates from the truncated stable distribution using Algorithm 4.3 in Dassios, Qu, and Lim (2020). This distribution has Laplace transform
L(z) = exp( t * (alpha/Gamma(1-alpha)) * int_0^b (e^(-xz)-1) x^(-1-alpha) e^(-mu*x) dx), z>0
and Levy measure
M(dx) = t * (alpha/Gamma(1-alpha)) * x^(-1-alpha) e^(-mu*x) 1(0<x<b) dx.
Here Gamma() is the gamma function.
Returns a vector of n random numbers.
Michael Grabchak and Lijuan Cao
A. Dassios, Y. Qu, J.W. Lim (2020). Exact simulation of a truncated Levy subordinator. ACM Transactions on Modeling and Computer Simulation, 30(10), 17.
M. Grabchak (2019). Rejection sampling for tempered Levy processes. Statistics and Computing, 29(3):549-558
M. Hofert (2011). Sampling exponentially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 22(1), 3.
rTrunTS(10, 2, 2, .6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.