morey_plot.ttest | R Documentation |
Plot out power sensitivity plots for t or F tests
morey_plot.ttest( es = seq(0, 1, 0.05), n = NULL, type = c("two.sample", "one.sample", "paired"), alternative = c("two.sided", "one.sided"), alpha_level = Superpower_options("alpha_level") ) morey_plot.ftest( es = seq(0, 1, 0.05), num_df = 1, den_df = NULL, alpha_level = Superpower_options("alpha_level"), liberal_lambda = Superpower_options("liberal_lambda") )
es |
Effect size magnitudes to include on the plot; either cohen's f or cohen's d depending on whether it is an F-test or t-test |
n |
Sample size (t-test only) per group (two sample), total number of pairs (paired samples), or total observations (one-sample); only applies to t-test |
type |
string specifying the type of t test. Can be abbreviated. (t-test only) |
alternative |
one- or two-sided test. Can be abbreviated. (t-test only) |
alpha_level |
vector of alpha levels; default is 0.05 |
num_df |
Numerator degrees of freedom for an F-test. |
den_df |
Denominator degrees of freedom for an F-test. |
liberal_lambda |
Logical indicator of whether to use the liberal (cohen_f^2\*(num_df+den_df)) or conservative (cohen_f^2\*den_df) calculation of the noncentrality (lambda) parameter estimate. Default is FALSE. |
Returns plots of effect size (x-axis)
morey_plot.ttest
: Power-sensitivity plot for t-tests
morey_plot.ftest
: Power-sensitivity plot for F-tests
Morey, R.D. (2020). Power and precision Why the push for replacing “power” with “precision” is misguided. Retrieved from: https://richarddmorey.medium.com/power-and-precision-47f644ddea5e
## Not run: # t-test example ------ # Sensitivity for cohen's d from .1 to .5 # sample sizes of 10 and 20 # alpha levels .05 and .075 # type will be paired and one sided # Set effect sizes with seq function (?seq) morey_plot.ttest(es = seq(.1,.5,.01), n = c(10,20), alpha_level = c(.05,.075), type = "paired", alternative = "one.sided") ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.