Nothing
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k1c"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#'1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k2c"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k4c"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k6c"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k8c"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k05ck2"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k1ck2"
#' basic kernels
#'
#' Kernels for computing directional differences for specific directions and lag distances.
#' These have been constructed using bilinear interpolation for directions out of main axes.
#' The kernels are intended to be used with "Terra" focal functions (i.e., convolution).
#'
#' @docType data
#'
#'
#'
#' @format just matrices.
#'
#' @keywords datasets
#'
#' @references
#' 1) Trevisani, S. & Rocca, M. 2015. MAD: Robust image texture analysis for applications in high resolution geomorphometry.
#' Computers and Geosciences, vol. 81, pp. 78-92.
#'
#' 2) Trevisani, S. Teza, G., Guth, P., 2023. A simplified geostatistical approach for characterizing key aspects of short-range roughness.
#' CATENA,Volume 223, ISSN 0341-8162,https://doi.org/10.1016/j.catena.2023.106927
#'
#'
#' @source Sebastiano Trevisani
#'
#' @examples
#' #to see kernels (each one is a list with 4 kernels) of order 1
#' #These should be used with a detrended "surface"
#' #lag 1 pixel
#' k1c
#' #lag 2 pixels
#' k2c
#' #lag 4 pixels
#' k4c
#' #lag 6 pixels
#' k6c
#' #lag 8 pixels
#' k8c
#' #kernels of order 2 (differences of differences)
#' #these can be applied directly without detrending
#' #lag 05 pixel
#' k05ck2
#' #lag 1 pixel
#' k1ck2
#' #lag 2 pixels
#' k2ck2
"k2ck2"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.