Description Usage Arguments Details Value References See Also Examples
This function fits the Transformed Additive Gaussian (TAG) process.
1 |
iniTAG |
object of class inheriting from "initial.TAG". |
HighD |
logical. If TRUE, only κ and delta will be estimated. This is useful for high dimensional data. Default is False. |
delta.threshold |
the minimum value of log10(delta). Default is -6. |
The details of the TAG process can be found in Lin and Joseph (2019).
When HighD = FALSE, the weight parameters, the length scale parameters, the nugget parameter, and the Box-Cox transformation parameter are estimated. When HighD = TRUE, the length scale parameters for TAG is η*s0, where s0 is the initial estimate of the length scale parameters. Only η and the nugget parameter are estimated.
The values returned from the function is a list containing the following components:
omega |
The estimates of the weight parameters. |
s |
The estimates of the length scale parameters. |
lambda |
The estimate of the Box-Cox transformation parameter. |
delta |
The estimate of the nugget parameter in log10 scale. For example, delta = -6 means that the estimate of the nugget is 10^(-6). |
kappa |
If HighD is true, an estimate of kappa will be returned, which is a multiplication factor for the initial estimates of the length scale parameters. |
ty |
The transformed response vector. |
X |
The n by p input design matrix. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
initial.TAG
for finding the initial values for the parameters in a TAG process, and pred.TAG
for prediction.
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.