tepDICA | R Documentation |
Discriminant Correspondence Analysis (DICA) via TExPosition.
tepDICA(
DATA,
make_data_nominal = FALSE,
DESIGN = NULL,
make_design_nominal = TRUE,
symmetric = TRUE,
graphs = TRUE,
k = 0
)
DATA |
original data to perform a DICA on. Data can be contingency (like CA) or categorical (like MCA). |
make_data_nominal |
a boolean. If TRUE (default), DATA is recoded as a dummy-coded matrix. If FALSE, DATA is a dummy-coded matrix. |
DESIGN |
a design matrix to indicate if rows belong to groups. Required for DICA. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
symmetric |
a boolean. If TRUE (default) symmetric factor scores for rows. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided
(via |
k |
number of components to return. |
If you use Hellinger distance, it is best to set symmetric
to
FALSE.
Note: DICA is a special case of PLS-CA (tepPLSCA
)
wherein DATA1 are data and DATA2 are a group-coded disjunctive matrix.
See epCA
(and also coreCA
) for details
on what is returned. In addition to the values returned:
fii |
factor scores computed for supplemental observations |
dii |
squared distances for supplemental observations |
rii |
cosines for supplemental observations |
assign |
a list of
assignment data. See |
lx |
latent variables from DATA1 computed for observations |
ly |
latent variables from DATA2 computed for observations |
Derek Beaton, Hervé Abdi
Abdi, H., and Williams, L.J. (2010). Principal component
analysis. Wiley Interdisciplinary Reviews: Computational Statistics,
2, 433-459.
Abdi, H. and Williams, L.J. (2010). Correspondence analysis.
In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of
Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007).
Singular Value Decomposition (SVD) and Generalized Singular Value
Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of
Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Abdi,
H. (2007). Discriminant correspondence analysis. In N.J. Salkind (Ed.):
Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage.
pp. 270-275.
Pinkham, A.E., Sasson, N.J., Beaton, D., Abdi, H., Kohler,
C.G., Penn, D.L. (in press, 2012). Qualitatively distinct factors contribute
to elevated rates of paranoia in autism and schizophrenia. Journal of
Abnormal Psychology, 121, -.
Williams, L.J., Abdi, H., French, R., &
Orange, J.B. (2010). A tutorial on Multi-Block Discriminant Correspondence
Analysis (MUDICA): A new method for analyzing discourse data from clinical
populations. Journal of Speech Language and Hearing Research, 53,
1372-1393.
Williams, L.J., Dunlop, J.P., & Abdi, H. (2012). Effect of
age on the variability in the production of text-based global inferences.
PLoS One, 7(5): e36161. doi:10.1371/ journal.pone.0036161 (pp.1-9)
coreCA
, epCA
, epMCA
data(dica.wine)
dica.res <- tepDICA(dica.wine$data,DESIGN=dica.wine$design,make_design_nominal=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.