tepPLSCA | R Documentation |
Partial Least Squares-Correspondence Analysis (PLSCA) via TExPosition.
tepPLSCA(
DATA1,
DATA2,
make_data1_nominal = FALSE,
make_data2_nominal = FALSE,
DESIGN = NULL,
make_design_nominal = TRUE,
symmetric = TRUE,
graphs = TRUE,
k = 0
)
DATA1 |
Data matrix 1 (X), must be categorical (like MCA) or in
disjunctive code see |
DATA2 |
Data matrix 2 (Y), must be categorical (like MCA) or in
disjunctive code see |
make_data1_nominal |
a boolean. If TRUE (default), DATA1 is recoded as a dummy-coded matrix. If FALSE, DATA1 is a dummy-coded matrix. |
make_data2_nominal |
a boolean. If TRUE (default), DATA2 is recoded as a dummy-coded matrix. If FALSE, DATA2 is a dummy-coded matrix. |
DESIGN |
a design matrix to indicate if rows belong to groups. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
symmetric |
a boolean. If TRUE (default) symmetric factor scores for rows. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided
(via |
k |
number of components to return. |
This implementation of Partial Least Squares is for two categorical data sets (Beaton et al., 2013), and based on the PLS method proposed by Tucker (1958) and again by Bookstein (1994).
See epCA
(and also coreCA
) for details
on what is returned. In addition to the values returned:
W1 |
Weights for columns of DATA1, replaces |
W2 |
Weights for columns of DATA2, replaces |
lx |
latent variables from DATA1 computed for observations |
ly |
latent variables from DATA2 computed for observations |
Derek Beaton, Hervé Abdi
Tucker, L. R. (1958). An inter-battery method of factor
analysis. Psychometrika, 23(2), 111–136.
Bookstein, F.,
(1994). Partial least squares: a dose–response model for measurement in the
behavioral and brain sciences. Psycoloquy 5 (23)
Abdi, H.
(2007). Singular Value Decomposition (SVD) and Generalized Singular Value
Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of
Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial
Least Squares (PLS) methods for neuroimaging: A tutorial and review.
NeuroImage, 56(2), 455 – 475.
Beaton, D., Filbey,
F., & Abdi H. (in press, 2013). Integrating partial least squares
correlation and correspondence analysis for nominal data. In Abdi, H., Chin,
W., Esposito Vinzi, V., Russolillo, G., & Trinchera, L. (Eds.), New
Perspectives in Partial Least Squares and Related Methods. New York:
Springer Verlag.
coreCA
, epCA
, epMCA
,
tepDICA
data(snps.druguse)
plsca.res <- tepPLSCA(snps.druguse$DATA1,snps.druguse$DATA2,
make_data1_nominal=TRUE,make_data2_nominal=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.