Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval = FALSE------------------------------------------------------------
# install.packages('TGS')
## ----setup--------------------------------------------------------------------
library(TGS)
## ---- eval = FALSE------------------------------------------------------------
# ## Assign absolute path to the input directory.
# input_dir <- '/home/saptarshi/datasets'
## ---- eval = FALSE------------------------------------------------------------
# ## Assign the name of the desired output directory.
# ## The output directory will be created automatically.
# output_dir <- '/home/saptarshi/My_TGS_output'
#
# ## Run algorithm 'TGS'.
# ## It is assumed that your data is continuous.
# ## In case, your data is discrete, simply
# ## make the following changes:
# ## (a) is.discrete = TRUE,
# ## (b) num.discr.levels = <number of discrete
# ## levels each gene has>,
# ## (c) discr.algo = ''.
# ##
# TGS::LearnTgs(
# isfile = 0,
# json.file = '',
# input.dirname = input_dir,
# input.data.filename = 'input_data_10.tsv',
# num.timepts = 21,
# true.net.filename = '',
# input.wt.data.filename = '',
# is.discrete = FALSE,
# num.discr.levels = 2,
# discr.algo = 'discretizeData.2L.Tesla',
# mi.estimator = 'mi.pca.cmi',
# apply.aracne = FALSE,
# clr.algo = 'CLR',
# max.fanin = 14,
# allow.self.loop = TRUE,
# scoring.func = 'BIC',
# output.dirname = output_dir
# )
## ---- eval = FALSE------------------------------------------------------------
# ## Assign the name of the desired output directory.
# ## The output directory will be created automatically.
# output_dir <- '/home/saptarshi/My_TGS_plus_output'
#
# ## Run algorithm 'TGS'
# TGS::LearnTgs(
# isfile = 0,
# json.file = '',
# input.dirname = input_dir,
# input.data.filename = 'input_data_10.tsv',
# num.timepts = 21,
# true.net.filename = '',
# input.wt.data.filename = '',
# is.discrete = FALSE,
# num.discr.levels = 2,
# discr.algo = 'discretizeData.2L.Tesla',
# mi.estimator = 'mi.pca.cmi',
# apply.aracne = TRUE,
# clr.algo = 'CLR',
# max.fanin = 14,
# allow.self.loop = TRUE,
# scoring.func = 'BIC',
# output.dirname = output_dir
# )
## ---- eval = FALSE------------------------------------------------------------
# ## Loads a list named 'unrolled.DBN.adj.matrix.list'
# load('unrolled.DBN.adj.matrix.list.RData')
## ---- eval = FALSE------------------------------------------------------------
# print(unrolled.DBN.adj.matrix.list[[7]])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.