Maximum Likelihood Estimation of TPPXG Regression Coefficients | R Documentation |
This function estimates the Two Parameter Poisson Xgamma regression coefficients as well as the
\alpha
parameter of the Two Parameter Poisson Xgamma distribution using the maximum likelihood method.
tppxg.reg(y, x)
y |
A numeric vector containg non-negative integer values. |
x |
A matrix or a data.frame with the predictor variables. |
The \theta
parameter has been transformed as a function of the expected value of the response variable Y
in the following manner:
\theta=\frac{1-\alpha \mu +\sqrt{(\alpha \mu -1)^2+12\alpha \mu}}{2\mu}
Given that the response variable satisfies Y_i \sim \text{TPPXG}(\alpha, \mu_i)
, then the
i^{\text{th}}
mean of Y is related to the predictor variables using the log link function:
\mu_i=e^{x_i^T \beta} \quad i=1,2,3,\dots n
For more details, see the paper referenced below.
A named list containing \alpha
parameter, a vector containing the \beta
coefficients and the maximum likelihood value.
Nikolaos Kontemeniotis.
R implementation and documentation: Nikolaos Kontemeniotis kontemeniotisn@gmail.com and Michail Tsagris mtsagris@uoc.gr.
"Wani, M. A., Ahmad, P. B., Para, B. A. and Elah, N. (2023). A new regression model for count data with applications to health care data. International Journal of Data Science and Analytics."
tppxg.mle
x <- matrix( rnorm(100 * 2), ncol = 2 )
y <- rtppxg(100)
tppxg.reg(y, x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.