Maximum Likelihood Estimation of TPXG Regression Coefficients | R Documentation |
This function estimates the Two Parameter Xgamma regression coefficients as well as the
\alpha
parameter of the Two Parameter Xgamma distribution using the maximum likelihood method.
tpxg.reg(y,x)
y |
A numeric vector containg strictly positive values. |
x |
A matrix or a data.frame with the predictor variables. |
This implementation employs a logarithmic link function to relate the \theta
parameter of the
Two-Parameter Xgamma distribution to the predictor variables.
Specifically, the relationship is defined as:
\theta=e^{X\beta}
where X is a matrix whose columns represent the predictor variables, and
\beta
is a column vector of corresponding regression coefficients.
A named list containing \alpha
parameter, a vector containing the \beta
coefficients and the maximum likelihood value.
Nikolaos Kontemeniotis.
R implementation and documentation: Nikolaos Kontemeniotis kontemeniotisn@gmail.com and Michail Tsagris mtsagris@uoc.gr.
"Sen, S., Chandra, N. and Maiti, S. S. (2018). On properties and applications of a two-parameter XGamma distribution. Journal of Statistical Theory and Applications, 17(4): 674–685."
tpxg.mle
x <- matrix( rnorm(100 * 2), ncol = 2 )
y <- rtpxg(100)
tpxg.reg(y, x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.