Nothing
test_that("trainModel", {
testExperiments <- readRDS("../testExperiments.rds")
MedicalClasification <- c(1, 1, 2, 2)
resultArray <-
trainModel(testExperiments,
MedicalClasification,
"haar",
"linear",
maxvars = 2)
MWA <- MultiWaveAnalysis(testExperiments, f = "haar")
MWADiscrim <- StepDiscrim(MWA, MedicalClasification, 2)
resultMWA <-
trainModel(MWADiscrim, MedicalClasification, "linear")
expect_s3_class(resultArray, "WaveModel")
expect_s3_class(resultMWA, "WaveModel")
expect_equal(resultArray, resultMWA)
})
test_that("trainModel Input", {
testExperiments <- readRDS("../testExperiments.rds")
MedicalClasification <- c(1, 1, 2, 2)
MWA <- MultiWaveAnalysis(testExperiments, f = "haar")
MWADiscrim <- StepDiscrim(MWA, MedicalClasification, 2)
expect_error(trainModel(MWA, MedicalClasification))
expect_error(trainModel(MWA, method = "linear"))
expect_error(trainModel(grps = MedicalClasification, method = "linear"))
expect_error(trainModel(MWA, MedicalClasification, method = "NotSupported"))
expect_error(trainModel(testExperiments, MedicalClasification, "haar",
"linear"))
expect_error(
trainModel(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
maxvars = 2
)
)
expect_error(
trainModel(
data = testExperiments,
grps = MedicalClasification,
method = "linear",
maxvars = 2
)
)
expect_error(trainModel(
data = testExperiments,
f = "haar",
method = "linear",
maxvars = 2
))
expect_error(trainModel(
grps = MedicalClasification,
f = "haar",
method = "linear",
maxvars = 2
))
expect_error(
trainModel(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
method = "linear",
maxvars = 0
)
)
expect_error(
trainModel(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
method = "linear",
VStep = 0
)
)
})
test_that("testModel", {
load(system.file("extdata/ECGExample.rda",package = "TSEAL"))
grps <- c(rep(1, 5), rep(2, 5))
MWA <-
generateStepDiscrim(ECGExample, grps, "haar", maxvars = 3)
aux <- extractSubset(MWA, c(1, 2, 9, 10))
MWATest <- aux[[1]]
MWATrain <- aux[[2]]
ldaDiscriminant <- trainModel(MWATrain, grps[3:8], "linear")
CM <- testModel(ldaDiscriminant, MWATest, grps[c(1, 2, 9, 10)])
expect_equal(as.matrix(CM$table),
matrix(c(2, 0, 0, 2), nrow = 2, ncol = 2),
ignore_attr = TRUE)
})
test_that("testModel Input", {
load(system.file("extdata/ECGExample.rda",package = "TSEAL"))
grps <- c(rep(1, 5), rep(2, 5))
MWA <-
generateStepDiscrim(ECGExample, grps, "haar", maxvars = 3)
aux <- extractSubset(MWA, c(1, 2, 9, 10))
MWATest <- aux[[1]]
MWATrain <- aux[[2]]
ldaDiscriminant <- trainModel(MWATrain, grps[3:8], "linear")
expect_error(testModel(model = ldaDiscriminant, test = MWATest))
expect_error(testModel(model = ldaDiscriminant, grps = grps[c(1, 2, 9, 10)]))
expect_error(testModel(test = MWATest, grps = grps[c(1, 2, 9, 10)]))
expect_error(testModel(
model = ldaDiscriminant,
test = MWATest,
grps = grps[c(1, 2, 8, 9, 10)]
))
})
test_that("LOOCV", {
testExperiments <- readRDS("../testExperiments.rds")
MedicalClasification <- c(1, 1, 2, 2)
MWA <- MultiWaveAnalysis(testExperiments, f = "haar")
MWADiscrim <- StepDiscrim(MWA, MedicalClasification, 1)
resultMWA <- LOOCV(MWADiscrim, MedicalClasification, "linear")
resultArray <- LOOCV(
testExperiments,
MedicalClasification,
f = "haar",
method = "linear",
maxvars = 1
)
expect_equal(resultArray, resultMWA)
})
test_that("LOOCV Input", {
testExperiments <- readRDS("../testExperiments.rds")
MedicalClasification <- c(1, 1, 2, 2)
MWA <- MultiWaveAnalysis(testExperiments, f = "haar")
MWADiscrim <- StepDiscrim(MWA, MedicalClasification, 1)
expect_error(LOOCV(MWA, MedicalClasification))
expect_error(LOOCV(MWA, method = "linear"))
expect_error(LOOCV(grps = MedicalClasification, method = "linear"))
expect_error(LOOCV(MWA, MedicalClasification, method = "NotSupported"))
expect_error(LOOCV(testExperiments, MedicalClasification, "haar",
"linear"))
expect_error(LOOCV(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
maxvars = 2
))
expect_error(
LOOCV(
data = testExperiments,
grps = MedicalClasification,
method = "linear",
maxvars = 2
)
)
expect_error(LOOCV(
data = testExperiments,
f = "haar",
method = "linear",
maxvars = 2
))
expect_error(LOOCV(
grps = MedicalClasification,
f = "haar",
method = "linear",
maxvars = 2
))
expect_error(
LOOCV(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
method = "linear",
maxvars = 0
)
)
expect_error(
LOOCV(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
method = "linear",
VStep = 0
)
)
})
test_that("KFCV", {
testExperiments <- readRDS("../testExperiments.rds")
MedicalClasification <- c(1, 1, 2, 2)
MWA <- MultiWaveAnalysis(testExperiments, f = "haar")
MWADiscrim <- StepDiscrim(MWA, MedicalClasification, 1)
resultMWA <- KFCV(MWADiscrim, MedicalClasification, "linear", 4)
resultArray <- KFCV(
testExperiments,
MedicalClasification,
k = 4,
f = "haar",
method = "linear",
maxvars = 1
)
expect_equal(resultArray, resultMWA)
})
test_that("KFCV Input", {
testExperiments <- readRDS("../testExperiments.rds")
MedicalClasification <- c(1, 1, 2, 2)
MWA <- MultiWaveAnalysis(testExperiments, f = "haar")
MWADiscrim <- StepDiscrim(MWA, MedicalClasification, 1)
expect_error(KFCV(MWA, MedicalClasification))
expect_error(KFCV(MWA, method = "linear"))
expect_error(KFCV(grps = MedicalClasification, method = "linear"))
expect_error(KFCV(
MWA,
MedicalClasification,
k = 4,
method = "NotSupported"
))
expect_error(KFCV(testExperiments, MedicalClasification, "haar",
"linear"))
expect_error(KFCV(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
maxvars = 2
))
expect_error(
KFCV(
data = testExperiments,
grps = MedicalClasification,
method = "linear",
maxvars = 2
)
)
expect_error(KFCV(
data = testExperiments,
f = "haar",
method = "linear",
maxvars = 2
))
expect_error(KFCV(
grps = MedicalClasification,
f = "haar",
method = "linear",
maxvars = 2
))
expect_error(
KFCV(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
method = "linear",
maxvars = 0
)
)
expect_error(
KFCV(
data = testExperiments,
grps = MedicalClasification,
f = "haar",
method = "linear",
VStep = 0
)
)
expect_error(
KFCV(
testExperiments,
MedicalClasification,
k = 0,
f = "haar",
method = "linear",
maxvars = 1
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.