| postprocess.tspred | R Documentation |
tspred objectsPerforms postprocessing of the predicted time series data contained in a tspred class object
reversing a particular set of transformation methods. Each transformation method is defined
by a processing object in the list contained in the tspred class object.
## S3 method for class 'tspred'
postprocess(obj, ...)
obj |
An object of class |
... |
Other parameters passed to the method |
The function postprocess.tspred recursively calls the method postprocess
on each processing object contained in obj in the inverse order
as done by preprocess.tspred. The postprocessed predictions
resulting from each of these calls is used as input to the next call. Finally, the produced
postprocessed time series predictions are introduced in the structure of the tspred class object in obj.
The same transformation method parameters used/computed during preprocessing, duly saved
in the structure of the tspred class object in obj, are used for
reversing the transformations during postprocessing.
An object of class tspred with updated structure containing
postprocessed time series predictions.
Rebecca Pontes Salles
[tspred()] for defining a particular time series prediction process, and [LT()] for defining a time series transformation method.
Other preprocess:
preprocess.tspred(),
subset()
data(CATS)
#Obtaining objects of the processing class
proc1 <- subsetting(test_len=20)
proc2 <- BoxCoxT(lambda=NULL)
proc3 <- WT(level=1, filter="bl14")
#Obtaining objects of the modeling class
modl1 <- ARIMA()
#Obtaining objects of the evaluating class
eval1 <- MSE_eval()
#Defining a time series prediction process
tspred_1 <- tspred(subsetting=proc1,
processing=list(BCT=proc2,
WT=proc3),
modeling=modl1,
evaluating=list(MSE=eval1)
)
summary(tspred_1)
tspred_1 <- subset(tspred_1, data=CATS[3])
tspred_1 <- preprocess(tspred_1,prep_test=FALSE)
tspred_1 <- train(tspred_1)
tspred_1 <- predict(tspred_1, onestep=TRUE)
tspred_1 <- postprocess(tspred_1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.