quality_metrics: Prediction/modeling quality metrics

Description Usage Arguments Value Error metrics Fitness criteria Author(s) See Also

Description

Constructors for the evaluating class representing a time series prediction or modeling fitness quality evaluation based on particular metrics.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

Arguments

eval_par

List of named parameters required by NMSE such as train.actual.

Value

An object of class evaluating.

Error metrics

MSE_eval: Mean Squared Error.

NMSE_eval: Normalised Mean Squared Error.

RMSE_eval: Root Mean Squared Error.

MAPE_eval: Mean Absolute Percentage Error.

sMAPE_eval: Symmetric Mean Absolute Percentage Error.

MAXError_eval: Maximal Error.

Fitness criteria

AIC_eval: Akaike's Information Criterion.

BIC_eval: Schwarz's Bayesian Information Criterion.

AICc_eval: Second-order Akaike's Information Criterion.

LogLik_eval: Log-Likelihood.

Author(s)

Rebecca Pontes Salles

See Also

Other constructors: ARIMA(), LT(), evaluating(), modeling(), processing(), tspred()


TSPred documentation built on Jan. 21, 2021, 5:10 p.m.