Description Usage Arguments Value Error metrics Fitness criteria Author(s) See Also
Constructors for the evaluating
class representing a time series prediction
or modeling fitness quality evaluation based on particular metrics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | MSE_eval()
NMSE_eval(eval_par = list(train.actual = NULL))
RMSE_eval()
MAPE_eval()
sMAPE_eval()
MAXError_eval()
AIC_eval()
BIC_eval()
AICc_eval()
LogLik_eval()
|
eval_par |
List of named parameters required by |
An object of class evaluating
.
MSE_eval: Mean Squared Error.
NMSE_eval: Normalised Mean Squared Error.
RMSE_eval: Root Mean Squared Error.
MAPE_eval: Mean Absolute Percentage Error.
sMAPE_eval: Symmetric Mean Absolute Percentage Error.
MAXError_eval: Maximal Error.
AIC_eval: Akaike's Information Criterion.
BIC_eval: Schwarz's Bayesian Information Criterion.
AICc_eval: Second-order Akaike's Information Criterion.
LogLik_eval: Log-Likelihood.
Rebecca Pontes Salles
Other constructors:
ARIMA()
,
LT()
,
evaluating()
,
modeling()
,
processing()
,
tspred()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.