Nothing
#' MSE error of prediction
#'
#' The function calculates the MSE error between actual and predicted values.
#'
#' @param actual A vector or univariate time series containing actual values
#' for a time series that are to be compared against its respective
#' predictions.
#' @param prediction A vector or univariate time series containing time series
#' predictions that are to be compared against the values in \code{actual}.
#' @return A numeric value of the MSE error of prediction.
#' @author Rebecca Pontes Salles
#' @seealso \code{\link{NMSE}},\code{\link{MAPE}},\code{\link{sMAPE}},
#' \code{\link{MAXError}}
#' @references Z. Chen and Y. Yang, 2004, Assessing forecast accuracy measures,
#' Preprint Series, n. 2004-2010, p. 2004-10.
#' @keywords MSE prediction error
#' @examples
#'
#' data(SantaFe.A,SantaFe.A.cont)
#' pred <- marimapred(SantaFe.A,n.ahead=100)
#' MSE(SantaFe.A.cont[,1], pred)
#'
#' @export MSE
MSE <-
function(actual, prediction) {
if (length(actual) != length(prediction)) stop("actual and prediction have different lengths")
n <- length(actual)
res <- mean((actual-prediction)^2)
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.