plot.TSVC: Plotting of Varying Coefficient Trees

View source: R/plot.TSVC.R

plot.TSVCR Documentation

Plotting of Varying Coefficient Trees

Description

Visualization of trees of effects of covariates that vary with the values of one or several effect modifiers.

Usage

## S3 method for class 'TSVC'
plot(
  x,
  variable,
  ellipse_a = 0.8,
  ellipse_b = 0.2,
  ellipse_x = 0,
  ellipse_y = 0,
  branch_adj = 0,
  cex.lines = 2,
  cex.branches = 1,
  cex.coefs = 1,
  cex.main = 1,
  cex.numbers = 1,
  draw_numbers = TRUE,
  title = NULL,
  decimals = 3,
  confint = NULL,
  ...
)

Arguments

x

a fitted object of class TSVC.

variable

name of the variable, for which the tree shall be plotted.

ellipse_a

controls width of ellipses containing coefficient estimates.

ellipse_b

controls height of ellipses containing coefficient estimates.

ellipse_x

controls location on x-axis of ellipses containing coefficient estimates.

ellipse_y

controls location on y-axis of ellipses containing coefficient estimates.

branch_adj

vertical adjustment of branch labels.

cex.lines

width of branches of the tree.

cex.branches

size of the labels of the tree.

cex.coefs

size of the coefficients in the terminal nodes of the tree.

cex.main

size of the title of the tree.

cex.numbers

size of the internally used node number.

draw_numbers

if true, internally used node numbers are displayed.

title

optional title, which is addded to the tree; if title=NULL the title is the name of the variable in the data.

decimals

number of decimals of coefficient estimates. Per default the coefficient estimates are displayed with three decimals.

confint

optional fitted object of class confint.TSVC with confidence intervals to be plotted in the terminal nodes of the tree; if confint=NULL (default) only the coefficient estimates will be plotted.

...

further arguments passed to or from other methods.

Author(s)

Moritz Berger <Moritz.Berger@imbie.uni-bonn.de>
https://www.imbie.uni-bonn.de/people/dr-moritz-berger/

References

Berger, M., G. Tutz and M. Schmid (2019). Tree-Structured Modelling of Varying Coefficients. Statistics and Computing 29, 217-229, https://doi.org/10.1007/s11222-018-9804-8.

See Also

TSVC, predict.TSVC, summary.TSVC

Examples

# Swiss Labour Market 
library(AER)
data("SwissLabor")

# recode factors 
sl <- SwissLabor
sl$participation <- as.numeric(sl$participation)-1
sl$foreign       <- as.numeric(sl$foreign)-1

## Not run: 
fit1 <- TSVC(participation~income+age, data=sl, family=binomial(link="logit"), 
             nperm=1000, trace=TRUE)
plot(fit1, "income")

fit2 <- TSVC(participation~income+age, data=sl, family=binomial(link="logit"), 
perm_test=FALSE, test_linear=FALSE, splits_max=3)
set.seed(20012025)
ci2  <- confint(fit2, bootstrap_n=500, alpha=0.05, trace=TRUE)
plot(fit2, variable="income", confint=ci2, ellipse_y=0, draw_numbers=FALSE)

## End(Not run)


TSVC documentation built on April 3, 2025, 10:26 p.m.