DTWDistance | R Documentation |
Computes the Dynamic Time Warping distance between a pair of numeric time series.
DTWDistance(x, y, ...)
x |
Numeric vector containing the first time series. |
y |
Numeric vector containing the second time series. |
... |
Additional parameters for the function. See |
This is simply a wrapper for the dtw
function of package dtw. As such, all the functionalities of the dtw
function are also available when using this function.
d |
The computed distance between the pair of series. |
Usue Mori, Alexander Mendiburu, Jose A. Lozano.
Giorgino T (2009). Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. Journal of Statistical Software, 31(7), pp. 1-24. URL:http://www.jstatsoft.org/v31/i07/
Cuturi, M. (2011). Fast Global Alignment Kernels. In Proceedings of the 28th International Conference on Machine Learning (pp. 929–936).
Gaidon, A., Harchaoui, Z., & Schmid, C. (2011). A time series kernel for action recognition. In BMVC 2011 - British Machine Vision Conference (pp. 63.1–63.11).
Marteau, P.-F., & Gibet, S. (2014). On Recursive Edit Distance Kernels With Applications To Time Series Classification. IEEE Transactions on Neural Networks and Learning Systems, PP(6), 1–13.
Lei, H., & Sun, B. (2007). A Study on the Dynamic Time Warping in Kernel Machines. In 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System (pp. 839–845).
Pree, H., Herwig, B., Gruber, T., Sick, B., David, K., & Lukowicz, P. (2014). On general purpose time series similarity measures and their use as kernel functions in support vector machines. Information Sciences, 281, 478–495.
To calculate a lower bound of the DTW distance see LBKeoghDistance
.
To calculate this distance measure using ts
, zoo
or xts
objects see TSDistances
. To calculate distance matrices of time series databases using this measure see TSDatabaseDistances
.
# The objects example.series3 and example.series4 are two # numeric series of length 100 and 120 contained in the TSdist # package data(example.series3) data(example.series4) # For information on their generation and shape see # help page of example.series. help(example.series) # Calculate the basic DTW distance for two series of different length. DTWDistance(example.series3, example.series4) # Calculate the DTW distance for two series of different length # with a sakoechiba window of size 30: DTWDistance(example.series3, example.series4, window.type="sakoechiba", window.size=30) # Calculate the DTW distance for two series of different length # with an assymetric step pattern DTWDistance(example.series3, example.series4, step.pattern=asymmetric)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.