The TVMVP package implements a method of estimating a time dependent covariance matrix based on time series data using principal component analysis on kernel weighted data. The package also includes a hypothesis test of time-invariant covariance, and methods for implementing the time-dependent covariance matrix in a portfolio optimization setting. This package is an R implementation of the method proposed in Fan et al. (2024). The original authors provide a Matlab implementation at https://github.com/RuikeWu/TV-MVP.
The local PCA method, method for determining the number of factors, and associated hypothesis test are based on Su and Wang (2017). The approach to time-varying portfolio optimization follows Fan et al. (2024). The regularisation applied to the residual covariance matrix adopts the technique introduced by Chen et al. (2019).
You can install the development version of TVMVP from GitHub with:
devtools::install_gitbub("erilill/TV-MVP")
provided that the package “devtools” has been installed beforehand.
After installing the package, you attach the package by running the code:
library(TVMVP)
For this example we will use simulated data, however most use cases for this package will be using financial data. This can be accessed using one of the many API’s available in R and elsewhere.
set.seed(123)
uT <- 100 # Number of time periods
up <- 20 # Number of assets
returns <- matrix(rnorm(uT * up, mean = 0.001, sd = 0.02), ncol = up)
For this example we will give usage examples using the methods of the R6
class TVMVP
, and a brief example of how to use the functions if this
is your preferred method of implementation
We start by initializing the object of class TVMVP
and set the data:
tvmvp_obj <- TVMVP$new()
tvmvp_obj$set_data(returns)
#> ℹ data set "16.22 kB" with 100 rows and 20 columns
Then we determine the number of factors and conduct the hypothesis test:
tvmvp_obj$determine_factors(max_m=5)
#> ! use default Silverman bandwidth
#> ℹ using max_m = 5 and bandwidth = 0.200158593074818
#> [1] 1
tvmvp_obj$get_optimal_m()
#> [1] 1
tvmvp_obj$hyptest(iB=10) # Use larger iB in practice
#> Computing ■■■■■■■ 20% | ETA: 8s
#> Computing ■■■■■■■■■■ 30% | ETA: 7sComputing ■■■■■■■■■■■■■ 40% | ETA: 6sComputing ■■■■■■■■■■■■■■■■ 50% | ETA: 5sComputing ■■■■■■■■■■■■■■■■■■■ 60% | ETA: 4sComputing ■■■■■■■■■■■■■■■■■■■■■■ 70% | ETA: 3sComputing ■■■■■■■■■■■■■■■■■■■■■■■■■ 80% | ETA: 2sComputing ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 90% | ETA: 1s J_pT = 34.7556, p-value = 0.0000: Strong evidence that the covariance is time-varying.
tvmvp_obj
#> ℹ Object of TVMVP
#> data set "16.22 kB" with 100 rows and 20 columns
#> - bandwidth = 0.200158593074818
#> - max_m = 5
#> - optimal_m = 1
#> - test statistic = 34.7556191258208 with bootstrap p-value = 0
#> run `get_optimal_m()`
The function determine_factors
uses a BIC-type information criterion
in order to determine the optimal number of factors to be used in the
model. More information can be seen in section 2.2 of the thesis. The
input variables are the data matrix returns
, the max number of factors
to be tested max_m
, and the bandwidth to be used bandwidth.
The
package offers the functionality of computing the bandwidth using
Silverman’s rule of thumb with the function silverman()
, however other
methods could be used. The function outputs the optimal number of
factors optimal_m
, and the values of the information criteria for the
different number of factors IC_values
.
hyptest
implements the hypothesis test of constant factor loadings
introduced by Su & Wong (2017). Under some conditions, the test
statistic $J$ follows a standard normal distribution under the null.
However, the test have been proven to be somewhat unreliable in finite
sample usage, which is why the option of computing a bootstrap p-value
is included. More information can be found in section 2.3 in the thesis.
The function take the input: a data matrix of multiple time series
returns
, the number of factors m
, the number of bootstrap
replications iB
, and the kernel function kernel_func
. The package
offers the Epanechnikov kernel, however others could also be used.
The next step, and the most relevant functionality is the portfolio
optimization. The package offers two functions for this purpose:
expanding_tvmvp
which implements a expanding window in order to
evaluate the performance of a minimum variance portfolio implemented
using the time-varying covariance matrix, and predict_portfolio
which
implements an out of sample prediction of the portfolio.
Note that these functions expect log returns and log risk free rate.
mvp_result <- tvmvp_obj$expanding_tvmvp(
initial_window = 60,
rebal_period = 5,
max_factors = 10,
return_type = "daily",
rf = NULL
)
mvp_result
#>
#> ── Expanding Window Portfolio Analysis ─────────────────────────────────────────
#> ────────────────────────────────────────────────────────────────────────────────
#>
#> ── Summary Metrics ──
#>
#> Method CER MER SD SR MER_ann
#> Time-Varying MVP 0.1491042 0.003727605 0.008475585 0.4398050 0.9393564
#> Equal Weight 0.1382776 0.003456941 0.004270192 0.8095516 0.8711491
#> SD_ann
#> 0.13454575
#> 0.06778719
#> ────────────────────────────────────────────────────────────────────────────────
#> ── Detailed Components ──
#>
#> The detailed portfolio outputs are stored in the following elements:
#> - Time-Varying MVP: Access via `$TVMVP`
#> - Equal Weight: Access via `$Equal`
plot(mvp_result)
The expanding_tvmvp
function takes the input: returns
a $T\times p$
data matrix, initial_window
which is the initial holding window used
for estimation, rebal_period
which is the length of the rebalancing
period to be used in the evaluation, max_factors
used in the
determination of the optimal number of factors, return_type
can be set
to “daily”, “weekly”, and “monthly”, and is used for annualization of
the results, kernel_func
, and rf
which denotes the risk free rate,
this can be input either as a scalar or at $(T-initialwindow)\times 1$
numerical vector. The function outputs relevant metrics for evaluation
of the performance of the portfolio such as cumulative excess returns,
standard deviation, and Sharpe ratio.
prediction <- tvmvp_obj$predict_portfolio(horizon = 21, min_return = 0.5,
max_SR = TRUE)
prediction
#>
#> ── Portfolio Optimization Predictions ──────────────────────────────────────────
#> ────────────────────────────────────────────────────────────────────────────────
#>
#> ── Summary Metrics ──
#>
#> Method expected_return risk sharpe
#> Minimum Variance Portfolio 0.03355982 0.01843029 0.3973543
#> Maximum SR Portfolio 0.06666808 0.02597654 0.5600503
#> Return-Constrained Portfolio 0.50000000 0.25855695 0.4219919
#> ────────────────────────────────────────────────────────────────────────────────
#> ── Detailed Components ──
#>
#> The detailed portfolio outputs are stored in the following elements:
#> - MVP: Use object$MVP
#> - Maximum Sharpe Ratio Portfolio: Use object$max_SR
#> - Minimum Variance Portfolio with Return Constraint: Use object$MVPConstrained
weights <- prediction$getWeights("MVP")
The predict_portfolio
functions makes out of sample predictions of the
portfolio performance. The functions offers three different methods of
portfolio optimization: Minimum variance, Minimum variance with minimum
returns constraint, and maximum Sharpe ratio portfolio. The minimum
variance portfolio is the default portfolio and will always be computed
when running this function. The minimum returns constraint is set by
imputing some min_return
-value when running the function, important to
note is that the minimum return constraint is set for the entire horizon
and is not a daily constraint. The maximum SR portfolio is computed when
max_SR
is set to TRUE.
If the pre-built functions does not fit your purpose, you can utilize the covariance function by running:
cov_mat <- tvmvp_obj$time_varying_cov()
Which outputs the covariance matrix weighted around the last observation in returns.
Below you see an example of how to use the functions instead:
# Determine number of factors
m <- determine_factors(returns = returns, max_m = 10, bandwidth = silverman(returns))$optimal_m
m
# Run test of constant loadings
hypothesis_test <- hyptest(returns = returns,
m = m,
B = 10, # Use larger B in practice
)
# Expanding window evaluation
mvp_result <- expanding_tvmvp(
obj = tvmvp_obj,
initial_window = 60,
rebal_period = 5,
max_factors = 10,
return_type = "daily",
kernel_func = epanechnikov_kernel,
rf = 1e-04
)
mvp_result
# Optimize weights and predict performance out-of-sample
prediction <- predict_portfolio(obj = tvmvp_obj,
horizon = 21,
m = 10,
kernel_func = epanechnikov_kernel,
min_return=0.5,
max_SR = TRUE,
rf = 1e-04)
prediction
weights <- prediction$getWeights("MVP")
# For custom portfolio optimization, compute the time dependent covariance:
cov_mat <- time_varying_cov(obj = tvmvp_obj,
max_factors = 5,
bandwidth = silverman(returns),
kernel_func = epanechnikov_kernel,
M0 = 10,
rho_grid = seq(0.005, 2, length.out = 30),
floor_value = 1e-12,
epsilon2 = 1e-6,
full_output = FALSE)
These have the same functionality as the methods, however using the class methods is neater as the necessary parameters are cached in the object.
Lillrank, E. (2025). A Time-Varying Factor Approach to Covariance Estimation.
Su, L., & Wang, X. (2017). On time-varying factor models: Estimation and testing. Journal of Econometrics, 198(1), 84–101.
Fan, Q., Wu, R., Yang, Y., & Zhong, W. (2024). Time-varying minimum variance portfolio. Journal of Econometrics, 239(2), 105339.
Chen, J., Li, D., & Linton, O. (2019). A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables. Journal of Econometrics, 212(1), 155–176.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.