TVMVP | R Documentation |
This class implements a time-varying minimum variance portfolio using locally smoothed principal component analysis (PCA) to estimate the time-dependent covariance matrix.
This class provides a flexible interface to:
Set return data ($set_data()
)
Determine optimal number of factors ($determine_factors()
)
Conduct test of constant factor loadings ($hyptest()
)
Time-dependent covariance estimation ($time_varying_cov()
)
Portfolio optimization ($predict_portfolio()
)
Expanding window evaluation ($expanding_tvmvp()
)
Extract cached results ($get_optimal_m()
, $get_IC_values()
,
$get_bootstrap()
)
Looking for package description? See TVMVP-package.
# Initial object of class TVMVP tv <- TVMVP$new() # Set data tv$set_data(returns) # Returns must be T times p matrix # Determine number of factors tv$determine_factors(max_m=10) # Test for constant loadings tv$hyptest() # Estimate time-dependent covariance matrix cov <- tv$time_varying_cov() # Evaluate TVMVP performance on historical data mvp_results <- tv$expanding_tvmvp( initial_window = 60, rebal_period = 5, max_factors = 10, return_type = "daily") # Make out-of-sample prediction and compute weights predictions <- tv$predict_portfolio(horizon=5, min_return = 0.01, max_SR = TRUE) # Extract weights predictions$getWeights("MVP")
#'
T × p
(time periods by assets) matrix of returns.
Numerical. Bandwidth parameter used for local smoothing in the local PCA
Integer. Maximum number of factors to be tested when determining the optimal number of factors.
The optimal number of factors to use in covariance estimation.
$new(data = NULL)
Initialize object of class TVMVP. Optionally pass returns matrix.
$set_data(data)
Set the data. Must be T × p
(time periods by assets) matrix.
$get_data()
Get the data.
$set()
Manually set arguments of the object.
$determine_factors()
Determines optimal number of factors based on BIC-type information criterion.
$get_optimal_m{}
Prints optimal number of factors, optimal_m.
$get_IC_values()
Prints IC-values for the different number of factors tested using determine_factors
.
$hyptest()
Hypothesis test of constant loadings.
$get_bootstrap()
Prints bootstrap test statistics from the hypothesis test.
$predict_portfolio()
Optimizes portfolio weights for out-of-sample prediction of portfolio performance.
$expanding_tvmvp()
Evaluates MVP performance in a expanding window framework.
$time_varying_cov()
Estimates the time-varying covariance matrix.
$silverman()
Silverman's rule of thumb bandwidth formula.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.